Bibliography#

[1]

Claude Marceau, Varun Makhija, Dominique Platzer, A. \relax Yu. Naumov, P. B. Corkum, Albert Stolow, D. M. Villeneuve, and Paul Hockett. Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry. Physical Review Letters, 119(8):083401, August 2017. URL: https://link.aps.org/doi/10.1103/PhysRevLett.119.083401, doi:10.1103/PhysRevLett.119.083401.

[2]

Paul Hockett and Varun Makhija. Topical Review: Extracting Molecular Frame Photoionization Dynamics from Experimental Data (Preprint). September 2022. URL: https://www.authorea.com/users/71114/articles/447808-extracting-molecular-frame-photoionization-dynamics-from-experimental-data (visited on 2022-09-15), arXiv:2209.04301, doi:10.48550/arXiv.2209.04301.

[3]

Paul Hockett and Varun Makhija. Topical Review: Extracting molecular frame photoionization dynamics from experimental data. Journal of Physics B: Atomic, Molecular and Optical Physics, 56(11):112001, May 2023. URL: https://dx.doi.org/10.1088/1361-6455/acd03e (visited on 2023-05-12), arXiv:2209.04301, doi:10.1088/1361-6455/acd03e.

[4]

Paul Hockett. Quantum Metrology with Photoelectrons, Volume 1: Foundations. IOP Publishing, 2018. ISBN 978-1-68174-684-5. URL: http://iopscience.iop.org/book/978-1-6817-4684-5, doi:10.1088/978-1-6817-4684-5.

[5]

Paul Hockett. Photoelectron Metrology Toolkit (PEMtk) Github repository. 2021. URL: phockett/PEMtk (visited on 2022-02-18).

[6]

Paul Hockett. Phase-sensitive Photoelectron Metrology (DAMOP 2017). June 2017. URL: https://vimeo.com/223603377 (visited on 2023-07-06), doi:10.6084/m9.figshare.5049142.v1.

[7]

Paul Hockett. Bootstrapping (Ultrafast) Photoionization Dynamics. January 2018. URL: https://vimeo.com/252040672 (visited on 2023-07-06), doi:10.6084/m9.figshare.5645509.v3.

[8]

Paul Hockett. Presentations archive: ultrafast light-matter interactions. Figshare, 2016. URL: https://figshare.com/collections/Presentations/3312291 (visited on 2022-02-16), doi:10.6084/m9.figshare.c.3312291.

[9]

Paul Hockett. Quantum Metrology with Photoelectrons, Volume 2: Applications and Advances. IOP Publishing, 2018. ISBN 978-1-68174-688-3. URL: http://iopscience.iop.org/book/978-1-6817-4688-3, doi:10.1088/978-1-6817-4688-3.

[10]

Varun Makhija, Xiaoming Ren, Drue Gockel, Ahn-Thu Le, and Vinod Kumarappan. Orientation Resolution through Rotational Coherence Spectroscopy. arXiv, pages 1–6, 2016. URL: http://arxiv.org/abs/1611.06476, arXiv:1611.06476, doi:10.48550/arXiv.1611.06476.

[11]

Varun Makhija, Kevin Veyrinas, Andrey E. Boguslavskiy, Ruaridh Forbes, Iain Wilkinson, Rune Lausten, Simon P. Neville, Stephen T. Pratt, Michael S. Schuurman, and Albert Stolow. Ultrafast molecular frame electronic coherences from lab frame scattering anisotropies. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(11):114001, May 2020. URL: https://dx.doi.org/10.1088/1361-6455/ab7a84 (visited on 2023-06-14), doi:10.1088/1361-6455/ab7a84.

[12]

Luna Morrigan, Simon P. Neville, Margaret Gregory, Andrey E. Boguslavskiy, Ruaridh Forbes, Iain Wilkinson, Rune Lausten, Albert Stolow, Michael S. Schuurman, Paul Hockett, and Varun Makhija. Ultrafast Molecular Frame Quantum Tomography. March 2023. URL: http://arxiv.org/abs/2303.03558 (visited on 2023-03-08), arXiv:2303.03558, doi:10.48550/arXiv.2303.03558.

[13]

Project Jupyter. URL: https://jupyter.org (visited on 2023-01-16).

[14]

Python.org. July 2023. URL: https://www.python.org/ (visited on 2023-07-07).

[15]

Jupyter Book Project. URL: https://jupyterbook.org.

[16]

Executable Books Community. Jupyter Book. Zenodo, February 2020. URL: https://zenodo.org/record/4539666 (visited on 2023-01-16), doi:10.5281/zenodo.4539666.

[17]

MyST Markdown - Tools for the future of technical communication. URL: https://mystmd.org/ (visited on 2023-07-07).

[18]

Sphinx documentation. URL: https://www.sphinx-doc.org (visited on 2023-07-07).

[19]

Paul Hockett. Open Photoionization Docker Stacks. URL: phockett/open-photoionization-docker-stacks (visited on 2022-08-04).

[20]

Paul Hockett. PEMtk - the Photoelectron Metrology Toolkit - documentation. 2021. URL: https://pemtk.readthedocs.io (visited on 2022-02-18).

[21]

Jake VanderPlas. Python Data Science Handbook. O'Reilly Media, Inc., 2016. ISBN 978-1-4919-1205-8. URL: https://www.oreilly.com/library/view/python-data-science/9781491912126/ (visited on 2023-07-07).

[22]

Jake VanderPlas. Python Data Science Handbook. July 2023. URL: jakevdp/PythonDataScienceHandbook (visited on 2023-07-07).

[23]

Nick Barnes. Publish your computer code: it is good enough. Nature, 467(7317):753, October 2010. URL: http://www.nature.com/news/2010/101013/full/467753a.html (visited on 2016-04-18), doi:10.1038/467753a.

[24]

Marcia McNutt. Taking up TOP. Science, 2016. URL: http://science.sciencemag.org/content/352/6290/1147.full (visited on 2017-04-04).

[25]

B. A. Nosek, G. Alter, G. C. Banks, D. Borsboom, S. D. Bowman, S. J. Breckler, S. Buck, C. D. Chambers, G. Chin, G. Christensen, M. Contestabile, A. Dafoe, E. Eich, J. Freese, R. Glennerster, D. Goroff, D. P. Green, B. Hesse, M. Humphreys, J. Ishiyama, D. Karlan, A. Kraut, A. Lupia, P. Mabry, T. Madon, N. Malhotra, E. Mayo-Wilson, M. McNutt, E. Miguel, E. Levy Paluck, U. Simonsohn, C. Soderberg, B. A. Spellman, J. Turitto, G. VandenBos, S. Vazire, E. J. Wagenmakers, R. Wilson, and T. Yarkoni. Promoting an open research culture. Science, 348(6242):1422–1425, June 2015. URL: http://science.sciencemag.org.proxy.bib.uottawa.ca/content/348/6242/1422.full (visited on 2017-04-04), doi:10.1126/science.aab2374.

[26]

Jon Treadway, Mark Hahnel, Sabina Leonelli, Dan Penny, David Groenewegen, Nobuko Miyairi, Kazuhiro Hayashi, Daniel O'Donnell, Digital Science, and Daniel Hook. The State of Open Data Report. Report, Digital Science, October 2016. URL: https://figshare.com/articles/report/The_State_of_Open_Data_Report/4036398/1 (visited on 2023-07-31), doi:10.6084/m9.figshare.4036398.v1.

[27]

Victoria Stodden and Sheila Miguez. Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research. Journal of Open Research Software, 2(1):e21, July 2014. URL: http://openresearchsoftware.metajnl.com/articles/10.5334/jors.ay/ (visited on 2016-03-17), doi:10.5334/jors.ay.

[28]

Robert R. Downs, W. Christopher Lenhardt, Erin Robinson, Ethan Davis, and Nicholas Weber. Community Recommendations for Sustainable Scientific Software. Journal of Open Research Software, November 2015. URL: http://openresearchsoftware.metajnl.com/articles/10.5334/jors.bt/ (visited on 2016-06-01), doi:10.5334/jors.bt.

[29]

James Howison, Ewa Deelman, Michael J. McLennan, Rafael Ferreira da Silva, and James D. Herbsleb. Understanding the scientific software ecosystem and its impact: Current and future measures. Research Evaluation, 24(4):454–470, October 2015. URL: https://doi.org/10.1093/reseval/rvv014 (visited on 2022-03-12), doi:10.1093/reseval/rvv014.

[30]

\\Open science\\. Open science. Wikipedia, May 2023. URL: https://en.wikipedia.org/w/index.php?title=Open_science&oldid=1155039330 (visited on 2023-07-07).

[31]

Thomas Kluyver, Benjamin Ragan-Kelley, P&#233, Fernando Rez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Dami&#225 Avila, n, Safia Abdalla, Carol Willing, and Jupyter Development Team. Jupyter Notebooks – a publishing format for reproducible computational workflows. Positioning and Power in Academic Publishing: Players, Agents and Agendas, pages 87–90, 2016. URL: https://ebooks.iospress.nl/doi/10.3233/978-1-61499-649-1-87 (visited on 2023-01-16), doi:10.3233/978-1-61499-649-1-87.

[32]

Brian E. Granger and Fernando Pérez. Jupyter: Thinking and Storytelling With Code and Data. Computing in Science & Engineering, 23(2):7–14, March 2021. doi:10.1109/MCSE.2021.3059263.

[33]

Paul Hockett. ePSproc: Post-processing suite for ePolyScat electron-molecule scattering calculations. Authorea, 2016. URL: https://www.authorea.com/users/71114/articles/122402/_show_article, arXiv:1611.04043, doi:10.6084/m9.figshare.3545639.

[34]

Paul Hockett. ePSproc: Post-processing for ePolyScat (Github repository). Github, 2016. URL: phockett/ePSproc, doi:10.6084/m9.figshare.3545639.

[35]

Paul Hockett. ePSproc: Post-processing for ePolyScat documentation. 2020. URL: https://epsproc.readthedocs.io (visited on 2022-02-18).

[36]

Robert R. Lucchese, Kazuo Takatsuka, and Vincent McKoy. Applications of the Schwinger variational principle to electron-molecule collisions and molecular photoionization. Physics Reports, 131(3):147–221, January 1986. URL: http://www.sciencedirect.com/science/article/pii/037015738690147X (visited on 2012-07-18), doi:10.1016/0370-1573(86)90147-X.

[37]

F. A. Gianturco, R. R. Lucchese, and N. Sanna. Calculation of low-energy elastic cross sections for electron-CF4 scattering. The Journal of Chemical Physics, 100(9):6464, May 1994. URL: http://scitation.aip.org/content/aip/journal/jcp/100/9/10.1063/1.467237 (visited on 2015-08-13), doi:10.1063/1.467237.

[38]

Alexandra P P Natalense and Robert R Lucchese. Cross section and asymmetry parameter calculation for sulfur 1s photoionization of SF[sub 6]. The Journal of Chemical Physics, 111(12):5344, 1999. URL: http://link.aip.org/link/JCPSA6/v111/i12/p5344/s1&Agg=doi (visited on 2012-07-18), doi:10.1063/1.479794.

[39]

R R Lucchese. ePolyScat User's Manual. URL: https://epolyscat.droppages.com/ (visited on 2022-04-26).

[40]

Andrew C. Brown, Gregory S. J. Armstrong, Jakub Benda, Daniel D. A. Clarke, Jack Wragg, Kathryn R. Hamilton, Zdeněk Mašín, Jimena D. Gorfinkiel, and Hugo W. van der Hart. RMT: R-matrix with time-dependence. Solving the semi-relativistic, time-dependent Schrödinger equation for general, multielectron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses. Computer Physics Communications, 250:107062, May 2020. URL: https://www.sciencedirect.com/science/article/pii/S0010465519303856 (visited on 2022-11-09), arXiv:1905.06156, doi:10.1016/j.cpc.2019.107062.

[41]

Andrew C. Brown, Gregory S. J. Armstrong, Jakub Benda, Daniel D. A. Clarke, Jack Wragg, Kathryn R. Hamilton, Zdeněk Mašín, Jimena D. Gorfinkiel, and Hugo W. van der Hart. RMT: R-matrix with time-dependence (repository). May 2020. URL: Uk-amor/RMT/rmt (visited on 2022-11-09), arXiv:1905.06156.

[42]

Danielle Dowek and Piero Decleva. Trends in angle-resolved molecular photoelectron spectroscopy. Physical Chemistry Chemical Physics, 24(40):24614–24654, October 2022. URL: https://pubs.rsc.org/en/content/articlelanding/2022/cp/d2cp02725a (visited on 2023-10-25), doi:10.1039/D2CP02725A.

[43]

Michael W Schmidt, Kim K Baldridge, Jerry A Boatz, Steven T Elbert, Mark S Gordon, Jan H Jensen, Shiro Koseki, Nikita Matsunaga, Kiet A Nguyen, Shujun Su, Theresa L Windus, Michel Dupuis, and John A Montgomery. General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14(11):1347–1363, 1993. URL: http://dx.doi.org/10.1002/jcc.540141112, doi:10.1002/jcc.540141112.

[44]

Mark S. Gordon. Gamess website. URL: http://www.msg.ameslab.gov/gamess/.

[45]

AMOSGateway. URL: https://amosgateway.org/ (visited on 2023-07-10).

[46]

Barry I. Schneider, Klaus Bartschat, Oleg Zatsarinny, Kathryn R. Hamilton, Igor Bray, Armin Scrinzi, Fernando Martin, Jesus Gonzalez Vasquez, Jonathan Tennyson, Jimena D. Gorfinkiel, Robert Lucchesse, and Sudhakar Pamidighantam. Atomic and Molecular Scattering Applications in an Apache Airavata Science Gateway. In Practice and Experience in Advanced Research Computing, PEARC '20, 270–277. New York, NY, USA, July 2020. Association for Computing Machinery. URL: https://dl.acm.org/doi/10.1145/3311790.3397342 (visited on 2023-07-10), doi:10.1145/3311790.3397342.

[47]

Barry I. Schneider, Klaus~Bartschat, Oleg Zatsarinny, Igor Bray, Armin Scrinzi, Fernando Martin, Markus Klinker, Jonathan Tennyson, Jimena D. Gorfinkiel, and Sudhakar Pamidighantam. A Science Gateway for Atomic and Molecular Physics. January 2020. URL: http://arxiv.org/abs/2001.02286 (visited on 2023-07-10), arXiv:2001.02286, doi:10.48550/arXiv.2001.02286.

[48]

Paul Hockett. ePS data: Photoionization calculations archive. 2019. URL: https://phockett.github.io/ePSdata/ (visited on 2022-02-16).

[49]

Paul Hockett. ePSdata repositories on Zenodo. 2019. URL: https://zenodo.org/search?page=1&size=20&q=hockett&keywords=Data.

[50]

NumPy. URL: https://numpy.org/ (visited on 2023-07-10).

[51]

Pandas - Python Data Analysis Library. URL: https://pandas.pydata.org/ (visited on 2023-07-10).

[52]

SciPy. URL: https://scipy.org/ (visited on 2023-07-10).

[53]

Stephan Hoyer and Joe Hamman. Xarray: N-D labeled Arrays and Datasets in Python. Journal of Open Research Software, 5(1):10, April 2017. URL: http://openresearchsoftware.metajnl.com/article/10.5334/jors.148/ (visited on 2022-08-03), doi:10.5334/jors.148.

[54]

Xarray documentation. URL: https://docs.xarray.dev/en/latest/index.html (visited on 2022-08-03).

[55]

Mike Boyle. Spherical Functions Github. April 2022. URL: moble/spherical_functions (visited on 2022-08-03).

[56]

Mike Boyle and Leo C. Stein. Moble/spherical_functions: Release v2022.4.2. Zenodo, May 2023. URL: https://zenodo.org/record/7960723 (visited on 2023-07-10), doi:10.5281/zenodo.7960723.

[57]

Mike Boyle, Blair Bonnett, Jon Long, Martin Ling, stiiin, Leo C. Stein, Eric Wieser, Dante A. B. Iozzo, Hunter Haglid, John Belmonte, John Long, Mark Wiebe, Yin Li, Zé Vinícius, James Macfarlane, and odidev. Moble/quaternion: Release v2022.4.3. Zenodo, February 2023. URL: https://zenodo.org/record/7636919 (visited on 2023-07-10), doi:10.5281/zenodo.7636919.

[58]

Moble/quaternion Github. URL: moble/quaternion (visited on 2023-07-10).

[59]

SciPy documentation. URL: https://docs.scipy.org/doc/scipy/index.html (visited on 2022-08-03).

[60]

Mark A. Wieczorek and Matthias Meschede. SHtools Github. SHTOOLS, August 2022. URL: SHTOOLS/SHTOOLS (visited on 2022-08-03).

[61]

Mark A. Wieczorek and Matthias Meschede. SHTools: Tools for Working with Spherical Harmonics. Geochemistry, Geophysics, Geosystems, 19(8):2574–2592, August 2018. URL: http://doi.wiley.com/10.1029/2018GC007529 (visited on 2022-08-03), doi:10.1029/2018GC007529.

[62]

Mark Wieczorek, MMesch, Elliott Sales de Andrade, Ilya Oshchepkov, xoviat, Benda Xu, Katrin Leinweber, and Andrew Walker. SHTOOLS/SHTOOLS: Version 4.5. Zenodo, September 2019. URL: https://zenodo.org/record/3457861 (visited on 2023-07-10), doi:10.5281/zenodo.3457861.

[63]

Mark A. Wieczorek and Matthias Meschede. SHtools Docs. SHTOOLS, August 2022. URL: https://shtools.github.io/SHTOOLS/ (visited on 2022-08-03).

[64]

Marcus Johansson and Valera Veryazov. Automatic procedure for generating symmetry adapted wavefunctions. Journal of Cheminformatics, 9(1):8, February 2017. URL: https://doi.org/10.1186/s13321-017-0193-3 (visited on 2022-08-03), doi:10.1186/s13321-017-0193-3.

[65]

Marcus Johansson. Libmsym Github. July 2022. URL: mcodev31/libmsym (visited on 2022-08-03).

[66]

LMFIT documentation. URL: https://lmfit.github.io/lmfit-py/intro.html (visited on 2022-08-03).

[67]

Matthew Newville, Till Stensitzki, Daniel B. Allen, and Antonino Ingargiola. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python. Zenodo, September 2014. URL: https://zenodo.org/record/11813 (visited on 2022-08-03), doi:10.5281/zenodo.11813.

[68]

Xyzpy documentation. URL: https://xyzpy.readthedocs.io (visited on 2023-07-10).

[69]

Matplotlib — Visualization with Python. URL: https://matplotlib.org/ (visited on 2023-07-10).

[70]

HoloViews documentation. URL: https://holoviews.org/ (visited on 2023-07-10).

[71]

hvPlot documentation. URL: https://hvplot.holoviz.org/index.html (visited on 2023-07-10).

[72]

Bokeh. URL: https://bokeh.org/ (visited on 2023-07-10).

[73]

Plotly. URL: https://plotly.com/python/ (visited on 2023-07-10).

[74]

Seaborn documentation. URL: https://seaborn.pydata.org (visited on 2023-07-10).

[75]

Michael Waskom. Seaborn: statistical data visualization. Journal of Open Source Software, 6(60):3021, April 2021. URL: https://joss.theoj.org/papers/10.21105/joss.03021 (visited on 2023-07-10), doi:10.21105/joss.03021.

[76]

Numba: A High Performance Python Compiler. URL: https://numba.pydata.org/ (visited on 2023-07-10).

[77]

Docker: Accelerated, Containerized Application Development. May 2022. URL: https://www.docker.com/ (visited on 2023-07-10).

[78]

Jupyter Docker Stacks documentation. URL: https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html (visited on 2023-07-10).

[79]

Jonathan Underwood. Limapack. March 2021. URL: jonathanunderwood/limapack (visited on 2023-07-10).

[80]

Tamar Seideman. Time-resolved photoelectron angular distributions: concepts, applications, and directions. Annual review of physical chemistry, 53:41–65, January 2002. URL: http://www.ncbi.nlm.nih.gov/pubmed/11972002 (visited on 2012-07-17), arXiv:11972002, doi:10.1146/annurev.physchem.53.082101.130051.

[81]

Tamar Seideman. Time-resolved photoelectron angular distributions as a probe of coupled polyatomic dynamics. Physical Review A, 64(4):042504, September 2001. URL: http://link.aps.org/doi/10.1103/PhysRevA.64.042504 (visited on 2013-03-14), doi:10.1103/PhysRevA.64.042504.

[82]

Christopher Gerry and Peter Knight. Introductory Quantum Optics. Cambridge University Press, 2005. URL: https://doi.org/10.1017/CBO9780511791239, doi:10.1017/CBO9780511791239.

[83]

Richard N Zare. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics. John Wiley & Sons, 1988. ISBN 978-0-471-85892-8. URL: https://www.wiley.com/en-us/Angular+Momentum%3A+Understanding+Spatial+Aspects+in+Chemistry+and+Physics-p-9780471858928.

[84]

Katharine L. Reid, David J. Leahy, and Richard N. Zare. Effect of breaking cylindrical symmetry on photoelectron angular distributions resulting from resonance-enhanced two-photon ionization. The Journal of Chemical Physics, 95(3):1746, 1991. URL: http://scitation.aip.org/content/aip/journal/jcp/95/3/10.1063/1.461023, doi:10.1063/1.461023.

[85]

Guorong Wu, Paul Hockett, and Albert Stolow. Time-resolved photoelectron spectroscopy: from wavepackets to observables. Physical chemistry chemical physics : PCCP, 13(41):18447–67, November 2011. URL: http://pubs.rsc.org/en/content/articlelanding/2011/cp/c1cp22031d, doi:10.1039/c1cp22031d.

[86]

Yasuki Arasaki, Kazuo Takatsuka, Kwanghsi Wang, and Vincent McKoy. Probing wavepacket dynamics with femtosecond energy- and angle-resolved photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 108(1-3):89–98, 2000. URL: http://www.sciencedirect.com/science/article/B6TGC-40T9H2X-B/2/ea056307101b30df942fc8387a61867d, doi:DOI: 10.1016/S0368-2048(00)00148-1.

[87]

Toshinori Suzuki and Benjamin J. Whitaker. Non-adiabatic effects in chemistry revealed by time-resolved charged-particle imaging. International Reviews in Physical Chemistry, 20(3):313–356, July 2001. URL: http://www.tandfonline.com/doi/abs/10.1080/01442350110045046 (visited on 2012-07-17), doi:10.1080/01442350110045046.

[88]

Albert Stolow and Jonathan G. Underwood. Time-Resolved Photoelectron Spectroscopy of Non-Adiabatic Dynamics in Polyatomic Molecules. In Stuart A. Rice, editor, Advances in Chemical Physics, volume 139, pages 497–584. John Wiley & Sons, Inc., Hoboken, NJ, USA, March 2008. URL: http://doi.wiley.com/10.1002/9780470259498 (visited on 2012-07-18), doi:10.1002/9780470259498.ch6.

[89]

P R Bunker and P Jensen. Molecular Symmetry and Spectroscopy. NRC Research Press, Ottawa, 2nd edition, 1998. URL: https://cdnsciencepub.com/doi/book/10.1139/9780660196282.

[90]

R Signorell and F Merkt. General symmetry selection rules for the photoionization of polyatomic molecules. Molecular Physics, 92(5):793–804, 1997. doi:10.1080/002689797169745.

[91]

Uwe Becker. Complete photoionisation experiments. Journal of Electron Spectroscopy and Related Phenomena, 96(1-3):105–115, November 1998. URL: http://linkinghub.elsevier.com/retrieve/pii/S0368204898002266 (visited on 2012-10-02), doi:10.1016/S0368-2048(98)00226-6.

[92]

Katharine L Reid. Photoelectron angular distributions. Annual review of physical chemistry, 54(19):397–424, January 2003. URL: http://dx.doi.org/10.1146/annurev.physchem.54.011002.103814 (visited on 2012-07-17), doi:10.1146/annurev.physchem.54.011002.103814.

[93]

H. Kleinpoppen, B. Lohmann, A. Grum-Grzhimailo, and U. Becker. Approaches to Perfect/Complete Scattering Experiments in Atomic and Molecular Physics. In H. H. Stroke, editor, Advances In Atomic, Molecular, and Optical Physics, volume 51, pages 471–534. Academic Press, January 2005. URL: https://www.sciencedirect.com/science/article/pii/S1049250X05510243 (visited on 2023-07-31), doi:10.1016/S1049-250X(05)51024-3.

[94]

Hans Kleinpoppen, Bernd Lohmann, and Alexei N Grum-Grzhimailo. Perfect/Complete Scattering Experiments. Volume 75. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-40513-6. URL: https://link.springer.com/book/10.1007/978-3-642-40514-3, doi:10.1007/978-3-642-40514-3.

[95]

Katharine L. Reid and Jonathan G. Underwood. Extracting molecular axis alignment from photoelectron angular distributions. The Journal of Chemical Physics, 112(8):3643, 2000. URL: http://link.aip.org/link/JCPSA6/v112/i8/p3643/s1&Agg=doi, doi:10.1063/1.480517.

[96]

Jonathan G. Underwood and Katharine L. Reid. Time-resolved photoelectron angular distributions as a probe of intramolecular dynamics: Connecting the molecular frame and the laboratory frame. The Journal of Chemical Physics, 113(3):1067, 2000. URL: http://link.aip.org/link/JCPSA6/v113/i3/p1067/s1&Agg=doi (visited on 2012-07-17), doi:10.1063/1.481918.

[97]

Karl Blum. Density Matrix Theory and Applications. Number 64 in Springer Series on Atomic, Optical, and Plasma Physics. Springer Berlin Heidelberg, Berlin, Heidelberg, 3rd edition edition, 2012. ISBN 978-3-642-20560-6. URL: http://link.springer.com/10.1007/978-3-642-20561-3, doi:10.1007/978-3-642-20561-3.

[98]

Margaret Gregory, Paul Hockett, Albert Stolow, and Varun Makhija. Towards molecular frame photoelectron angular distributions in polyatomic molecules from lab frame coherent rotational wavepacket evolution. Journal of Physics B: Atomic, Molecular and Optical Physics, 54(14):145601, July 2021. URL: https://doi.org/10.1088/1361-6455/ac135f (visited on 2021-08-17), arXiv:2012.04561, doi:10.1088/1361-6455/ac135f.

[99]

Paul Hockett, Matthias Wollenhaupt, Christian Lux, and Thomas Baumert. Complete photoionization experiments via ultrafast coherent control with polarization multiplexing. II. Numerics and analysis methodologies. Physical Review A, 92(1):013411, July 2015. URL: http://link.aps.org/doi/10.1103/PhysRevA.92.013411, doi:10.1103/PhysRevA.92.013411.

[100]

Margaret Gregory, Simon Neville, Michael Schuurman, and Varun Makhija. A laboratory frame density matrix for ultrafast quantum molecular dynamics. The Journal of Chemical Physics, 157(16):164301, October 2022. URL: https://aip.scitation.org/doi/10.1063/5.0109607 (visited on 2022-10-31), doi:10.1063/5.0109607.

[101]

G. Mauro D'Ariano, Matteo G.A. Paris, and Massimiliano F. Sacchi. Quantum Tomography. In Advances in Imaging and Electron Physics, Vol. 128, pages 205–308. 2003. URL: http://linkinghub.elsevier.com/retrieve/pii/S1076567003800654 (visited on 2017-09-11), doi:10.1016/S1076-5670(03)80065-4.

[102]

Malte C Tichy, Florian Mintert, and Andreas Buchleitner. Essential entanglement for atomic and molecular physics. Journal of Physics B: Atomic, Molecular and Optical Physics, 44(19):192001, October 2011. URL: http://stacks.iop.org/0953-4075/44/i=19/a=192001?key=crossref.18d3f3352e48809821ebdd35c6d00cb6 (visited on 2014-08-19), doi:10.1088/0953-4075/44/19/192001.

[103]

Joel Yuen-Zhou, Jacob J Krich, Ivan Kassal, Allan S Johnson, and Alán Aspuru-Guzik. Ultrafast Spectroscopy: Quantum Information and Wavepackets. IOP Publishing, 2014. ISBN 978-0-7503-1062-8. URL: http://iopscience.iop.org/book/978-0-750-31062-8 (visited on 2017-09-25), doi:10.1088/978-0-750-31062-8.

[104]

J. R. Johansson, P. D. Nation, and Franco Nori. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Computer Physics Communications, 183(8):1760–1772, August 2012. URL: https://www.sciencedirect.com/science/article/pii/S0010465512000835 (visited on 2023-02-25), doi:10.1016/j.cpc.2012.02.021.

[105]

J. R. Johansson, P. D. Nation, and Franco Nori. QuTiP 2: A Python framework for the dynamics of open quantum systems. Computer Physics Communications, 184(4):1234–1240, April 2013. URL: https://www.sciencedirect.com/science/article/pii/S0010465512003955 (visited on 2023-02-25), doi:10.1016/j.cpc.2012.11.019.

[106]

QuTiP - Quantum Toolbox in Python. URL: https://qutip.org/ (visited on 2023-02-25).

[107]

Fabio Benatti, Mark Fannes, Roberto Floreanini, and Dimitri Petritis, editors. Quantum Information, Computation and Cryptography: An Introductory Survey of Theory, Technology and Experiments. Volume 808 of Lecture Notes in Physics. Springer, Berlin, Heidelberg, 2010. ISBN 978-3-642-11913-2 978-3-642-11914-9. URL: https://link.springer.com/10.1007/978-3-642-11914-9 (visited on 2023-02-25), doi:10.1007/978-3-642-11914-9.

[108]

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. ISBN 978-0-511-97666-7. URL: https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE, doi:10.1017/CBO9780511976667.

[109]

Henrik Stapelfeldt and Tamar Seideman. Colloquium: Aligning molecules with strong laser pulses. Reviews of Modern Physics, 75(2):543–557, April 2003. URL: http://rmp.aps.org/abstract/RMP/v75/i2/p543_1 (visited on 2013-01-28), doi:10.1103/RevModPhys.75.543.

[110]

Hirokazu Hasegawa and Yasuhiro Ohshima. Nonadiabatic Molecular Alignment and Orientation. In Kaoru Yamanouchi, Luis Roso, Ruxin Li, Deepak Mathur, and Didier Normand, editors, Progress in Ultrafast Intense Laser Science XII, Springer Series in Chemical Physics, pages 45–64. Springer International Publishing, Cham, 2015. URL: https://doi.org/10.1007/978-3-319-23657-5_3 (visited on 2022-08-26), doi:10.1007/978-3-319-23657-5_3.

[111]

Christiane P Koch, Mikhail Lemeshko, and Dominique Sugny. Quantum control of molecular rotation. Reviews of Modern Physics, 91(3):035005, 2019. doi:10.1103/RevModPhys.91.035005.

[112]

Jens H Nielsen, Dominik Pentlehner, Lars Christiansen, Benjamin Shepperson, Anders A Søndergaard, Adam S Chatterley, James D Pickering, Constant A Schouder, Alberto Viñas Muñoz, Lorenz Kranabetter, and others. Laser-induced alignment of molecules in helium nanodroplets. In Molecules in Superfluid Helium Nanodroplets: Spectroscopy, Structure, and Dynamics, pages 381–445. Springer International Publishing Cham, 2022.

[113]

S Ramakrishna and Tamar Seideman. On the information content of time- and angle-resolved photoelectron spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(19):194012, October 2012. URL: http://stacks.iop.org/0953-4075/45/i=19/a=194012?key=crossref.68faa78abc832ed11020afde085ac486 (visited on 2012-11-06), doi:10.1088/0953-4075/45/19/194012.

[114]

S. Ramakrishna and Tamar Seideman. Rotational wave-packet imaging of molecules. Physical Review A, 87(2):023411, February 2013. URL: http://link.aps.org/doi/10.1103/PhysRevA.87.023411 (visited on 2014-02-10), doi:10.1103/PhysRevA.87.023411.

[115]

Paul Hockett. General phenomenology of ionization from aligned molecular ensembles. New Journal of Physics, 17(2):023069, February 2015. URL: http://dx.doi.org/10.1088/1367-2630/17/2/023069 http://stacks.iop.org/1367-2630/17/i=2/a=023069?key=crossref.bdbb6f53e1f801f11c6bfeca01330fde, doi:10.1088/1367-2630/17/2/023069.

[116]

Varun Makhija. Laser-Induced Rotational Dynamics As a Route To Molecular Frame Measurements. PhD thesis, Kansas State University, 2014. URL: http://hdl.handle.net/2097/18522.

[117]

C. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Physical Review, 74(7):764–772, October 1948. URL: http://link.aps.org/doi/10.1103/PhysRev.74.764 (visited on 2015-01-15), doi:10.1103/PhysRev.74.764.

[118]

D Dill. Fixed-molecule photoelectron angular distributions. The Journal of Chemical Physics, 65(3):1130–1133, 1976. URL: http://scitation.aip.org/content/aip/journal/jcp/65/3/10.1063/1.433187 (visited on 2014-04-03), doi:10.1063/1.433187.

[119]

S. L. Altmann and C. J. Bradley. On the Symmetries of Spherical Harmonics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 255(1054):199–215, January 1963. URL: http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.1963.0002 (visited on 2012-07-17), doi:10.1098/rsta.1963.0002.

[120]

\relax SL Altmann and \relax AP Cracknell. Lattice harmonics I. Cubic groups. Reviews of Modern Physics, 37(1):19–32, 1965. URL: http://rmp.aps.org/abstract/RMP/v37/i1/p19_1 (visited on 2013-06-12).

[121]

N Chandra. Photoelectron spectroscopic studies of polyatomic molecules. I. Theory. Journal of Physics B: Atomic and Molecular Physics, 20(14):3405–3415, July 1987. URL: http://stacks.iop.org/0022-3700/20/i=14/a=013?key=crossref.84d7b9236af8a867d51605ee407558b9, doi:10.1088/0022-3700/20/14/013.

[122]

Katharine L. Reid and Ivan Powis. Symmetry considerations in molecular photoionization: Fixed molecule photoelectron angular distributions in C3v molecules as observed in photoelectron–photoion coincidence experiments. The Journal of Chemical Physics, 100(2):1066, 1994. URL: http://scitation.aip.org/content/aip/journal/jcp/100/2/10.1063/1.466638, doi:10.1063/1.466638.

[123]

\\Spherical harmonics\\. Spherical harmonics. Wikipedia, June 2023. URL: https://en.wikipedia.org/w/index.php?title=Spherical_harmonics&oldid=1159615082 (visited on 2023-07-13).

[124]

B Schmidtke, M Drescher, N a Cherepkov, and U Heinzmann. On the impossibility to perform a complete valence-shell photoionization experiment with closed-shell atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 33(13):2451–2465, July 2000. URL: http://stacks.iop.org/0953-4075/33/i=13/a=306?key=crossref.ec62c50a4abb6a8ccb8209c7b3c89478, doi:10.1088/0953-4075/33/13/306.

[125]

P. Hockett, M. Wollenhaupt, C. Lux, and T. Baumert. Complete Photoionization Experiments via Ultrafast Coherent Control with Polarization Multiplexing. Physical Review Letters, 112(22):223001, June 2014. URL: http://link.aps.org/doi/10.1103/PhysRevLett.112.223001, doi:10.1103/PhysRevLett.112.223001.

[126]

P Hockett, M Wollenhaupt, and T Baumert. Coherent control of photoelectron wavepacket angular interferograms. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(21):214004, November 2015. URL: http://stacks.iop.org/0953-4075/48/i=21/a=214004?key=crossref.8f534585af9180a499934cb25c9994c1, doi:10.1088/0953-4075/48/21/214004.

[127]

Rick Trebino. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Springer New York, NY, 2000. ISBN 978-1-4613-5432-1. URL: https://link.springer.com/book/10.1007/978-1-4615-1181-6 (visited on 2022-05-02).

[128]

Varun Makhija, Xiaoming Ren, Drue Gockel, Anh-Thu Le, and Vinod Kumarappan. Orientation resolution through rotational coherence spectroscopy. arXiv preprint arXiv:1611.06476, 2016.

[129]

Xu Wang, Anh-Thu Le, Zhaoyan Zhou, Hui Wei, and CD Lin. Theory of retrieving orientation-resolved molecular information using time-domain rotational coherence spectroscopy. Physical Review A, 96(2):023424, 2017.

[130]

Péter Sándor, Adonay Sissay, François Mauger, Paul M Abanador, Timothy T Gorman, Timothy D Scarborough, Mette B Gaarde, Kenneth Lopata, Kenneth J Schafer, and Robert R Jones. Angle dependence of strong-field single and double ionization of carbonyl sulfide. Physical Review A, 98(4):043425, 2018.

[131]

Péter Sándor, Adonay Sissay, François Mauger, Mark W Gordon, TT Gorman, TD Scarborough, Mette B Gaarde, Kenneth Lopata, KJ Schafer, and RR Jones. Angle-dependent strong-field ionization of halomethanes. The Journal of chemical physics, 151(19):194308, 2019.

[132]

Tomthin Nganba Wangjam, Huynh Van Sa Lam, and Vinod Kumarappan. Strong-field ionization of the triplet ground state of o 2. Physical Review A, 104(4):043112, 2021.

[133]

Huynh Van Sa Lam, Suresh Yarlagadda, Anbu Venkatachalam, Tomthin Nganba Wangjam, Rajesh K Kushawaha, Chuan Cheng, Peter Svihra, Andrei Nomerotski, Thomas Weinacht, Daniel Rolles, and others. Angle-dependent strong-field ionization and fragmentation of carbon dioxide measured using rotational wave packets. Physical Review A, 102(4):043119, 2020.

[134]

Huynh Van Sa Lam, Tomthin Nganba Wangjam, and Vinod Kumarappan. Alignment dependence of photoelectron angular distributions in the few-photon ionization of molecules by ultraviolet pulses. Physical Review A, 105(5):053109, 2022.

[135]

Jonathan G. Underwood, I. Procino, L. Christiansen, J. Maurer, and H. Stapelfeldt. Velocity map imaging with non-uniform detection: Quantitative molecular axis alignment measurements via Coulomb explosion imaging. Review of Scientific Instruments, 86(7):073101, July 2015. URL: https://aip.scitation.org/doi/10.1063/1.4922137 (visited on 2022-09-08), arXiv:1502.04007, doi:10.1063/1.4922137.

[136]

Lixin He, Pengfei Lan, Anh-Thu Le, Baoning Wang, Bincheng Wang, Xiaosong Zhu, Peixiang Lu, and C. D. Lin. Real-Time Observation of Molecular Spinning with Angular High-Harmonic Spectroscopy. Physical Review Letters, 121(16):163201, October 2018. URL: https://link.aps.org/doi/10.1103/PhysRevLett.121.163201 (visited on 2023-03-09), doi:10.1103/PhysRevLett.121.163201.

[137]

Yanqing He, Lixin He, Pu Wang, Bincheng Wang, Siqi Sun, Ruxuan Liu, Baoning Wang, Pengfei Lan, and Peixiang Lu. Measuring the rotational temperature and pump intensity in molecular alignment experiments via high harmonic generation. Optics Express, 28(14):21182–21191, July 2020. URL: https://opg.optica.org/oe/abstract.cfm?uri=oe-28-14-21182 (visited on 2023-03-09), doi:10.1364/OE.397560.

[138]

V. Loriot, R. Tehini, E. Hertz, B. Lavorel, and O. Faucher. Snapshot imaging of postpulse transient molecular alignment revivals. Physical Review A, 78(1):013412, July 2008. URL: http://link.aps.org/doi/10.1103/PhysRevA.78.013412 (visited on 2013-02-27), doi:10.1103/PhysRevA.78.013412.

[139]

Pu Wang, Lixin He, Yanqing He, Jianchang Hu, Siqi Sun, Pengfei Lan, and Peixiang Lu. Rotational echo spectroscopy for accurate measurement of molecular alignment. Optics Letters, 47(5):1033–1036, March 2022. URL: https://opg.optica.org/ol/abstract.cfm?uri=ol-47-5-1033 (visited on 2023-03-09), doi:10.1364/OL.451011.

[140]

By P W Atkins, M S Child, and C S G Phillips. Tables for Group Theory. Oxford University Press, 2006. URL: https://global.oup.com/uk/orc/chemistry/qchem2e/student/tables/.

[141]

Achim Gelessus. Character tables for chemically important point groups. URL: http://symmetry.jacobs-university.de/ (visited on 2023-04-23).

[142]

Gernot Katzer. Character Tables for Point Groups Cn, Cnv, Cnh, Dn, Dnh, Dnd, S2n etc. URL: http://www.gernot-katzers-spice-pages.com/character_tables/index.html (visited on 2023-04-23).

[143]

Paul Hockett. Molecular Frame Reconstruction using Time-domain Photoionization Interferometry (Figshare). Figshare, May 2017. URL: https://doi.org/10.6084/m9.figshare.4480349 (visited on 2023-07-27), doi:10.6084/m9.figshare.4480349.v10.

[144]

Jo Woodhose. OCS experimental work (personal communication, manuscript in preparation). 2022.

[145]

L D Landau and E M Lifshitz. Quantum Mechanics (Non-relativistic Theory). Pergamon Press, 3 edition, 1977.

[146]

Albert Messiah. Quantum Mechanics Volume I. North-Holland Publishing Company, 1970.

[147]

Jun John Sakurai. Modern Quantum Mechanics. Addison-Wesley, Reading, MA, revised edition edition, 1994. URL: https://cds.cern.ch/record/1167961.

[148]

\\Euler angles\\. Euler angles. Wikipedia, June 2023. URL: https://en.wikipedia.org/wiki/Euler_angles (visited on 2023-07-17).

[149]

\\Wigner D-matrix\\. Wigner D-matrix. Wikipedia, June 2023. URL: https://en.wikipedia.org/wiki/Wigner_D-matrix (visited on 2023-07-17).