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Quantum Metrology with Photoelectrons Vol. 3: Analysis methodologies

By Paul Hockett with Varun Makhija

About the books

Photoionization is an interferometric process, in which multiple paths can contribute to the final continuum photoelec-
tron wavefunction. At the simplest level, interferences between different final angular momentum states are manifest in
the energy and angle resolved photoelectron spectra: metrology schemes making use of these interferograms are thus
phase-sensitive, and provide a powerful route to detailed understanding of photoionization. In these cases, the continuum
wavefunction (and underlying scattering dynamics) can be characterised. At a more complex level, such measurements
can also provide a powerful probe for other processes of interest, leading to a more general class of quantum metrology
built on phase-sensitive photoelectron imaging. Since the turn of the century, the increasing availability of photoelectron
imaging experiments, along with the increasing sophistication of experimental techniques, and the availability of compu-
tational resources for analysis and numerics, has allowed for significant developments in such photoelectron metrology.

• Volume I covers the core physics of photoionization, including a range of computational examples. The material
is presented as both reference and tutorial, and should appeal to readers of all levels. ISBN 978-1-6817-4684-5,
http://iopscience.iop.org/book/978-1-6817-4684-5 (IOP Press, 2018)

• Volume II explores applications, and the development of quantum metrology schemes based on photoelectron
measurements. The material is more technical, and will appeal more to the specialist reader. ISBN 978-1-6817-
4688-3, http://iopscience.iop.org/book/978-1-6817-4688-3 (IOP Press, 2018)

Additional online resources for Vols. I & II can be found on OSF and Github.
• Volume III in the series continues this exploration, with a focus on numerical analysis techniques, forging a closer
link between experimental and theoretical results, and making the methodologies discussed directly accessible
via new software. The book is due for publication by IOP in 2023; this volume is also open-source, with a live
HTML version at https://phockett.github.io/Quantum-Metrology-with-Photoelectrons-Vol3/ and source available
at https://github.com/phockett/Quantum-Metrology-with-Photoelectrons-Vol3.

Technical details

This repository contains:
• doc-source the source documents (mainly Jupyter Notebooks in Python)
• notes additional notes for the book,
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• gh-pages branch contains the current HTML build, available at https://phockett.github.io/
Quantum-Metrology-with-Photoelectrons-Vol3/

The project has been setup to use the Jupyter Book build-chain (which uses Sphinx on the back-end) to generate HTML
and Latex outputs for publication from source Jupyter notebooks & markdown files.
The work within the book will make use of the Photoelectron Metrology Toolkit platform for working with experimental
& theoretical data.
For further technical details, see Chpt. 2 in the book.

Running code examples

Each Jupyter notebook (*.ipynb) can be treated as a stand-alone computational document. These can be
run/used/modified independently with an appropriately setup python environment, for details see Chpt. 2 in the book.

Docker builds
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Docker images, including the full book source and all required packages, are available from Docker hub, sim-
ply run docker pull epsproc/quantum-met-vol3 to pull a copy, then docker run epsproc/
quantum-met-vol3 to run with default settings (which uses port 8888 for JupyterLab). The Jupyter Lab inter-
face will be available at http://localhost:8888, with default password qm3. (To specify a port at run time, add -p
<newPort>:8888 to the run command, e.g. docker run -p 9999:8888 epsproc/quantum-met-vol3
to set port to 9999.)
The Docker images contain the book source, along with all required packages and Jupyter Lab (based on
the Jupyter Docker Stacks Scipy image). Book source files are available in the container at github/
Quantum-Metrology-with-Photoelectrons-Vol3/. For more details on the Jupyter Lab base container,
see the Jupyter Docker Stacks website.
For the source Dockerfiles and additional notes, see /docker in the QM3 github repository.
Archived versions can also be found on Zenodo, DOI: 10.5281/zenodo.8286020

Building the book

The full book can also be built from source in a suitably configured environment (see Chpt. 2 in the book):
1. Clone this repository
2. Run pip install -r requirements.txt (it is recommended you do this within a virtual environment)
3. (Optional) Edit the books source files located in the doc-source/ directory
4. Run jupyter-book clean doc-source/ to remove any existing builds
5. Run jupyter-book build doc-source/

A fully-rendered HTML version of the book will be built in doc-source/_build/html/.

Credits

This project is created using the open source Jupyter Book project and the executablebooks/cookiecutter-jupyter-book
template.
For a full build environment listing, see Build versions.
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CHAPTER

ONE

ABOUT THE AUTHORS

Paul Hockett and Varun Makhija’s interests span a gamut of topics in atomic, molecular and optical (AMO) and quan-
tum physics, at the intersection of spectroscopy, photoionization, (ultrafast) optics, molecular control and dynamics, and
metrology. Paul’s recent work has focussed on photoelectron metrology, with the main aims of matrix element retrieval,
as outlined in this series (Quantum metrology with photoelectron) of books. Varun’s work has focussed primarily on rota-
tional wavepacket methodologies and reconstruction, and application of these techniques to molecular systems, including
full excited state density matrix reconstruction and applications in photoelectron metrology.
Paul is a research scientist at the National Research Council of Canada, Ottawa, Canada,
https://orcid.org/0000-0001-9561-8433
Varun is a faculty member at the University of Mary Washington, Virginia, USA,
https://orcid.org/0000-0002-4975-4888
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CHAPTER

TWO

ABSTRACT

The overall aim of QuantumMetrology with Photoelectrons Vol. 3 is to expand, explore, and illustrate, new computational
developments in quantummetrology with photoelectrons: specifically, the application of new python-based tools to tackle
problems in photoionization matrix element retrieval. Part I details the topic, theory and computational methods; Part II
provides further numerical details and case-studies.
The book itself is fully open-source, and written as a set of Jupyter Notebooks. All the material herein is available directly
to readers via a Github repository QuantumMetrologyVol. 3 (Github repo). Any example script, page, chapter - up to and
including the full book - can be executed and modified by readers to further explore the topic interactively, and provide
a foundation which can be adapted to apply the methodology to new problems. Further details can be found in Sect. 4.2.

9
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CHAPTER

THREE

A NOTE ON BOOK VERSIONS, FORMATS AND CONVENTIONS

3.1 Versions

This book exists in multiple formats, which are not all equal:
1. Jupyter notebooks. The original form, interactive computational notebooks includes text, executable code and full

outputs. Source notebooks are available via Quantum Metrology Vol. 3 (Github repo).
2. HTML pages. Compiled from the notebooks, include interactive figures and most computational outputs. The

HTML version is available at Quantum Metrology Vol. 3 (HTML version).
3. PDF and hard-copy. Standard static outputs, compiled from the notebooks. In this form some computational

outputs are truncated or omitted for brevity and readability. Since some formats may not support hyperlinks,
URLs to external references are also usually included in the bibliography - note that these may not always be the
full URLs linked in the main text, and may only list the main index page of a given site in some cases. Some figures
may also be omitted.

3.2 Conventions

Note: In many cases where there is significant truncation of the presentation in the PDF, a note like this may be
included.
E.g. Full tabulations of the parameters available in HTML or notebook formats only.

Code (Python) appears in formatted cells, with comments, and outputs below the cell:

# Example comment in code
value = 3*3
print(f'This is a code cell, value={value}')

This is a code cell, value=9

In HTML and PDF formats some code cells that appear in the source notebooks may be hidden or removed, or have
outputs hidden or removed. This is usually for brevity - e.g. to remove additional code-only examples that are only useful
when working directly on the code, or repeated code - or to hide additional formatting commands required only for Jupyter
Book builds. All code cells are annotated to indicate their contents.

11
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Code-related terms in the text, e.g. the names of functions, packages etc., usually appear as in-line blocks, e.g. Numpy,
and may additionally be linked to relevant web resources, e.g. Numpy.
For more details on the aims, tools and build-chain, see Sect. 4.2.2.

3.3 Formatting

In some cases additional formatting is required for defining Jupter Notebook to HTML and PDF outputs (via the Jupyter
Book build-chain, see Sect. 4.2.2), in particular the glue command is used for formatting figure outputs with captions.
In general use these are not required, but will transparently display figures when executed in the Jupyter Lab environment.
Note that glued tables from Pandas DataFrames are not nicely rendered in the HTML format, but interactive HTML
output is usually include too, although this may be hidden in the cell above the glued table.

3.4 Numerics

At the time of writing the main code-bases used in this work (see Sect. 5 are still in active development, bugs, inconsis-
tencies and errors cannot, therefore, be ruled out in the numerical examples. However, the case for 1D alignment and
reconstruction has been well-tested in the past (e.g. Refs. [1, 2, 3]), so is expected to be accurate; cases with 3D alignment
are presented in a provisional context, with caveats as above, although the general methodology as demonstrated is robust.

12 Chapter 3. A note on book versions, formats and conventions
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CHAPTER

FOUR

INTRODUCTION

The overall aim of Quantum Metrology with Photoelectrons Vol. 3 is to expand, explore, and illustrate, new computational
developments in quantummetrology with photoelectrons: specifically, the application of new python-based tools to tackle
problems in matrix element retrieval. The book itself is written as a set of Jupyter Notebooks, hence all the material herein
is available directly to readers, and can be run locally to further explore the topic interactively, and provide a foundation
which can be adapted to apply the methodology to new problems.
Whilst this volume aims to provide a self-contained text, and focuses on computational examples which may be used
without extensive background knowledge, a brief contextual introduction is presented here (Sect. 4.1 below), and the
necessary core physics,as well as some recent extensions, is also presented herein (Chapter 6). The unfamiliar reader is
referred to QuantumMetrologyVol. 1 [4] for a more detailed introduction to the physics, and as a more general gateway to
the literature. Following the topical introduction, the remainder of Part I introduces the main computational and software
tools (Chapter 5), recent theory developments (Chapter 6), and concludes with a general overview for approaching matrix
element retrieval numerically (Chapter 7).
Part II details the application of these tools to a few specific cases, including a general guide to setting up and running
the Photoelectron Metrology Toolkit [5] fitting routines (see Chapter 8 for an outline), then proceeding with a (relatively)
simple homonuclear diatomic example (Chapter 11), and escalating in complexity to a the most general polyatomic asym-
metric top case.

4.1 Topical introduction: from quantum metrology to a generalised
bootstrapping protocol

There are two core topics at the heart of this work, specifically photoelectron spectroscopy (and associated experimental,
theoretical and analysis methodologies) and quantum metrology in general. To briefly (re)introduce these topics, and
contextually frame the work discussed herein, some brief comments from Quantum Metrology Vol. 1 [4] are reproduced
below; the reader is referred to the introductory chapters of Quantum Metrology Vol. 1 [4] for a lengthier treatment, and
an introductory video to Phase-sensitive Photoelectron Metrology can be found online (see also Refs. [6, 7, 8] for further
introductory presentation videos, materials and resources around the topic).

4.1.1 Quantum metrology with photoelectrons

To set the general context, consider quantum metrology in general…
Quantummetrology can be loosely defined as any class of experiment which provides detailed information on
quantum mechanical properties (phases, coherences, entanglement etc.) of a system. To stay with the spirit
of modern metrology, this definition can further be refined to measurements which provide high-resolution
quantum information; a clear contemporary example is therefore experimental methodologies which pro-
vide full quantum state reconstruction (e.g. quantum tomography), and/or make use of quantum mechanical
properties as a tool for measurement (e.g. atom interferometry). Traditional high-resolution spectroscopies

15
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may also fit within this definition in some cases, although in the majority of cases high-resolution spectro-
scopic measurements provide transition line-strengths and energies, but lack sufficient information for a full
determination or reconstruction of the underlying quantum state.
[…]
…at what point does a measurement of a quantum mechanical system become quantum metrology? A prag-
matic view on this is that the complete quantum state of the system must be capable of unique definition
from the experimental measurement(s). This is pragmatic in the sense that it leaves the door open for both
inferred and direct reconstruction techniques. In the former case, the experimental data informs the theory
and analysis, but is not directly ‘analysed’ or ‘inverted’ to provide or reconstruct the full quantum information;
in the latter case one obtains the desired quantum mechanical information from the measurement in a more
‘direct’ fashion (which may, admittedly, still remain as a rather convoluted process, depending on the level
of theoretical input required). Traditional spectroscopies again provide a touchstone here - high-resolution
spectroscopy measurements can be compared with models or ab initio computations to provide quantum
mechanical details of a system, but typically do not directly provide this information from a set of measure-
ments alone. In this sense they fit a pragmatic definition of quantum metrology, but not a more specific
definition of quantum metrology as a (somewhat) direct empirical technique.
[…]
In summary, while quantum metrology can come in many flavours, at heart it might be considered as any
set of measurements (and associated analysis methodologies) which provide detailed (quantitative) quantum
mechanical information on a given system of interest - ideally with little or no restriction on the complexity
of the system - and it is discussed in this spirit herein.

---Quantum Metrology Vol. 1 [4], Chpt. 1
And, for the specific case of photoionization…

… both ab initio methods and high-dimensionality measurements (combined with detailed analysis method-
ologies) can nonetheless provide detailed information on the photoionization dynamics. Although the sim-
ple analogy with Young’s double-slit [i.e. basic two-path interferometry] fails, the resulting photoelectron
flux, measured spatially, remains, in essence, a self-referencing angular interferogram of the continuum
wavefunction. In a more abstract sense, the basic interferometer paradigm can be extended to the general
‘photoionization interferometer’, one just has to keep in mind that there are now potentially many, many
channels. In the most basic sense, the energy and angle resolved interferograms - the photoelectron flux as a
function of energy and angle 𝐼(𝐸, 𝜃, 𝜙) - which may be measured, are nothing more than an interferometric
measurement sensitive to the relative phases of the different angular momentum components.
[…]
In the photoionization community, the angular interferograms (which will usually be considered at a single
energy𝐸) are photoelectron angular distributions (PADs), and have long been used as a means to learn about
the process of photoionization. In this context, PADs measured for a range of experimental parameters can
provide a dataset with sufficient information content to determine the magnitudes and phases of the photo-
electron wavefunction, hence the photoionization dynamics may be reconstructed from the measurements in
favourable cases. This class of measurement is traditionally termed a complete photoionization experiment,
although the exact nature of the completeness may vary. The phase-sensitivity of photoelectron interfero-
grams have also been used in complementary fashions in other contexts, including as a means to probe the
phase-shift induced by a specific prepared pathway, and control in multipath schemes, and in many other
regimes.
[…]
… the combination of a phase-sensitive quantum mechanical observable - photoelectron interferograms
- with modern experimental and computational techniques provides the tools required for a full quantum
metrology based on this class of measurement. Following the above discussion and definitions, a full metrol-
ogy technique is one which allows both the intrinsic and extrinsic/dynamic quantum mechanical properties
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of the system under study to be obtained/reconstructed from a measurement, or set of measurements. In
the simplest case, one might seek to understand just the intrinsic photoionization dynamics of a scattering
system (e.g. the magnitudes and phases of the various pathways […]), while in more complex cases the
intrinsic properties are part of a probe process for additional properties or dynamics of the system […]. In
all cases, the key is measurement (and possibly control) with a high information-content technique, and a
detailed understanding of the processes involved.

---Quantum Metrology Vol. 1 [4], Chpt. 1
In summary, the focus of the work presented herein is the quantitative analysis of phase-sensitive observables from pho-
toionization, specifically photoelectron angular distributions (PADs) as a function of energy, angle and time, which will
be denoted 𝐼(𝜖, 𝑡, 𝜃, 𝜙) in general herein. These photoelectron interferograms are introducted in more detail (including
examples) in Sect. 6.6.

Fig. 4.1: Conceptual outline for the generalised bootstrap retrieval protocol for radial matrix elements, including retrieval of
MF properties, via a set of time-resolved measurements and suitable post-processing scheme. In the LF/AF, a set of laser
pulses creates and probes an aligned distribution of molecules, and photoelectron images are measured (as a function
of time, hence molecular alignment). The experimental data is analyzed through a multi-step “bootstrap” protocol to
obtain matrix elements, which constitute a complete description of the photoionization event. These can further be used
to obtain MF observables, for any polarization geometry. Note the coordinates show will be used throughout the book,
with the LF z-axis defined relative to the laser field (E) polarization, and the MF defined with the molecular axis aligned
along the z-axis (and polarization geometries for the laser field (E) referenced to this axis) - see also Fig. 6.1 for a more
detailed frame definition.
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4.1.2 Generalised geometric metrology protocols

In order to develop a quantitative form of photoelectron spectroscopy, hence analyse photoelectron interferograms in
the context of quantum metrology in general, a number of techniques have previously been investigated (see Quantum
Metrology Vols. 1 & 2 [4, 9]). In general, any applicable technique involves the manipulation or control of parameters
which affect the observables in analytically-defined (or otherwise well-characterised) ways; measurements over a set of
suitable experimental or control parameters then provide the high information-content dataset required for a full charac-
terisation of the system at hand. Typically, “geometric” (angular-momentum) properties of the system provide a suitable
set of control parameters, and a number of experimental methodologies with different flavours of these parameters have
been demonstrated (see Quantum Metrology Vol. 2 [9]). The main, outstanding, issue with previous techniques was the
system-specific nature of many of the applications: ideally, one would like to make use of a generalised protocol, which
is independent of the particulars of the system under study, hence does not require, for example, specific spectroscopic
properties to be known and/or be experimentally accessible.
The main aim of the work in the current volume is the further development, deployment and demonstrations of, such
a scheme. The focus is on one specific high information-content technique: the generalised bootstrap retrieval protocol,
which makes use of experiments using rotational wavepackets (RWP) as a (geometric) control dimension, and time-
resolved photoelectron measurements as a high-dimensionality, phase-sensitive observable; the combination of these
measurements with a quantitative analysis methodology provides a (relatively) general route to a full quantum metrology
with photoelectrons (a.k.a. complete photoionization experiments, a.k.a. quantum state reconstruction/quantum tomog-
raphy). A brief introduction to the technique is given below, with theoretical and numerical techniques and demonstrations
forming the remainder of this book; interested readers can find a longer topical introduction in Quantum Metrology Vol.
2 [9] (in particular Chpt. 11), and see also Ref. [1] for an experimental demonstration, and Refs. [2, 3] for a recent
review in the context of molecular frame reconstruction.
As defined in Quantum Metrology Vol. 2 [9]:

For the analysis of the data [time-resolved photoelectron images from a rotationally-excited system], a ‘boot-
strapping’ fitting approach was developed. This methodology [… is illustrated conceptually in Fig. 4.1, and
outlined in more detail in Fig. 7.1 …] is comprised of two stages (potentially split into multiple steps) which
allow for the separation of the two sets of unknowns (rotational and ionization dynamics), and provides a
way to gradually bootstrap to the complete MF results via stages of analysis of increasing complexity. The
nature of the fitting at each stage also provides a flexible methodology which can be used to carefully sample
the solution hyperspace in order to ensure unique results, and fit with variable information content (experi-
mental measurements) based on computational time and desired precision, based on a similar Monte-Carlo
sampling manner to the methodologies already discussed […]. In all cases, the underlying physics provides
stringent limits on the form of the fitting functions, hence the fitting procedure at each stage is expected to be
somewhat reliable by construction. Further analysis of the results, including comparison with experimental
parameters, additional data not used in the analysis, and ab initio calculations all provide additional means
of cross-checking and verifying the extracted physical parameters.
In terms of information content, the bootstrapping procedure gradually increases both the experimental in-
formation content - the number of geometric configurations of the photoionization interferometer - and the
level of physical information included (hence fitted/extracted) in the analysis. In the first step, ADMs [i.e.
molecular alignment properties] are determined without the need for accurate treatment of the ionization
probe [10]; in the second step this information is used as part of the calculation to determine the ionization
dynamics. In the sub-steps to determine the ionization dynamics, the experimental information content in-
cluded in the analysis is gradually increased: the initial coarse steps in this procedure provide a base-line
high information content, without the necessity for many temporal points, via the selection of highly distinct
molecular axis distributions, while latter sub-steps allow for fine-tuning of the data by gradually coupling
additional time-steps [or other constraints] into the analysis.

---Quantum Metrology Vol. 2 [9], Chpt. 11
The protocol as presented relies on certain steps to be experimentally realisable, and theoretically calculable:

1. Molecular alignment. Experimentally, this can be induced in any system with a strong (typically > 1012~Wcm−2),
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short (few hundred femtosecond timescale or shorter) infra-red laser pulse, which (impulsively) creates a rotational
wavepacket in the system. The exact nature of the wavepacket is laser pulse(s) and system dependent, but the
technique is general.

2. Time-resolved photoelectron measurements. Experimentally, this requires - at minumum - a pump-probe type con-
figuration, with the alignment pulse as the pump, and a time-delayed ionization pulse. This is a typical experimental
configuration in many ultrafast laser labs, with pulses typically in the atto- or femto-second regime. Measurements
may be made by any angle-resolved technique; photoelectron imaging (via velocity-map imaging, VMI) is currently
the most accessible and widespread method.

3. Data analysis. This provides the bridge from high information-content measurements to a full quantum metrology
(system characterisation). For the generalised bootstrapping approach this requires:

• In order to characterise the rotational wavepacket created, alignment calculations of the system must be pos-
sible - such computations are increasingly tractable, if not already (somewhat) routine for a number of groups,
although quite challenging and computational expensive for asymmetric top systems. These calculations are
required in order to determine the rotational wavepacket (RWP) quantitatively, and in order to determine the
corresponding ADMs from/for the experiment. RWP computation is beyond the scope of the current work,
but their use in the bootstrapping protocol is discussed in Chapter 7.

• To characterise the intrinsic photoionization dynamics, a set of appropriate geometric basis functions must be
computed, and combined with a sufficiently large dataset to enable extraction of the photoionization matrix
elements via a fitting procedure. This is the main focus of Part II herein.

• (Optional) In cases with extrinsic dynamics, these may further be analysed once the intrinsic dynamics have
been characterised (or as part of that characterisation); this may, however, remain qualitative or semi-
quantitative, depending on the system dynamics and complexity. This aspect of photoelectron metrology
is beyond the scope of the current work, see discussion in Quantum Metrology Vol. 2 [9] for more discus-
sion; recent examples of such work may be found in Refs. [11, 12], which investigated coherent electronic
dynamics and complete quantum tomography of such a case.

4. (Optional) Ab initio computations may also be performed to compare with any or all of the previous steps; compar-
ison with step 3 is particularly powerful, since one can compare fundamental quantum mechanical properties, as
opposed to comparisons between measured and simulated observables, which may be integrated over many degrees
of freedom of the system.

As detailed in the following section (Sect. 4.2), the main aims herein are the development of the methodology and toolkit
to address the data analysis requirement (step 3), and to test this methodology for a range of example cases.

4.2 Context & aims for Vol. 3

4.2.1 Scientific aims

Thework in the current volume primarily addresses recent developments towards a generalised bootstrapping protocol (i.e.
the analysis of the data obtained by time-resolved photoelectron imaging measurements - or similar - from a rotationally-
excited system), as previously outlined in Quantum Metrology Vol. 2 [9] Sect. 12.3; in particular the new Photoelectron
Metrology Toolkit [5] has been built with the aim of making the protocol easy to use and apply to any given problem (as
distinct from a bespoke/per-experiment analysis methodology and/or non-open-source codebase).
Part I herein includes a full precis of the new codebase (Chapter 5), along with the theory (Chapter 6) and numerics
(Chapter 7) implemented towards this end; Part II provides multiple demonstrations of the new code-base, including the
use of the toolkit to investigate more complex systems beyond the simple homonuclear diatomic case demonstrated to
date.
Although the analysis herein focuses on the RWP case, the techniques and codebase developed are equally applicable to
any methodology or protocol making use of geometric properties as a variable, and are built with all such problems in mind
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- although minor modifications or extensions may be required for specific cases. Examples include other cases discussed
in Quantum Metrology Vols. 1 & 2 [4, 9], e.g. the use of shaped laser pulses or the use of narrow-band, state-selected
rotational excitation; in all cases the fitting/retrieval of matrix elements is carried out in the same manner, and the only
changes required to the methodology are the choice of control variable and the corresponding input experimental or
theoretical parameters - this is discussed further in Sect. 7.2.

4.2.2 Technical context and notes

As noted previously, Vol. 3 is somewhat distinct from the previous volumes in the series; although involving computa-
tional elements, Quantum Metrology Vols. 1 & 2 [4, 9] are more traditional publications. The material presented in this
volume aims to continue the exploration of quantum metrology with photoelectrons, with a focus on numerical analysis
techniques, forging a closer link between experimental and theoretical results, and making the methodologies discussed
directly accessible via a new software platform/ecosystem, Photoelectron Metrology Toolkit [5], introduced in more de-
tail in Chapter 5. In order to fulfill this aim, Vol. 3 is an open source computational/computable document, with code
directly available to readers to facilitate code transparency and reuse. This can be broken down as follows:

1. The book itself is written as a set of Jupyter Notebooks [13].1

• These are .ipynb files, usually running a Python kernel [14], each of which is designed such that it can be
modified and used independently.

• The full book is compiled from these sections using the Jupyter Book [15, 16] project platform,2 which
includes build tools and specifications for the specific flavour of Markdown (MyST) [17] used for the written
text, and uses Sphinx [18] to build HTML and Latex/PDF flavours of the book.

• The book source code is available via a Github repository, Quantum Metrology Vol. 3 (Github repo), which
includes all the notebooks (in the doc-source directory), as well as installation and build notes for building
the book itself.

• An HTML version is also available at Quantum Metrology Vol. 3 (HTML version), which includes interactive
figures.

2. The code examples within the book make use the new Photoelectron Metrology Toolkit [5].
• In order to run code examples, a specific python environment (with various additional python packages) is
required.

• A full introduction to the relevant software tool-chain, including installation instructions for the codes used
within the book, can be found in Chapter 5: Quantum metrology software platform/ecosystem overview.

• For a quick and easy installation, including all requirements, a Docker build of the platform can also be used,
see Sect. 5.4.2: Docker deployments (see also the Open Photoionization Docker Stacks [19] for more related
tools).

• Once configured, any code examples from the book can be executed locally by the user/reader, and modified
as desired. Each notebook is designed to be run as a stand-alone computational document.

3. The book can be regarded as, essentially, a manual and introduction to the Photoelectron Metrology Toolkit [5], as
well as a foundation for those wishing to use (and potentially extend) the platform.

• Part I covers all required background material, including details of the theory and numerical methods imple-
mented.

• Part II contains various examples of usage for a range of problems, and possible extensions.
• Since no specific knowledge of the underlying physics should be required to use the software tools, they
will hopefully also provide a suitable platform for new researchers wishing to learn about photoionization in
general.

1 For more information on the Jupyter Project and ecosystem, see jupyter.org and Refs. [13, 31, 32].)
2 For more information see jupyterbook.org and Refs. [15, 16].
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• It is, of course, also hoped that established researchers in the field will find the tools useful, and readily
adaptable, to related problems of interest.

• Further documentation for the software tools (including the full PEMtk API) can be found online in the
PEMtk documentation [20].

Finally, it is of note that whilst readers unfamiliar with the Jupyter and Python ecosystem may find that there is somewhat
of a barrier to entry for making use of the platform, it is one that may be worth surmounting given the ubiquity of these
tools, and general usefulness in modern scientific/data-science workflows; readers already making use of these tools in
their work should have no difficultly, and the platform adheres to standard practice wherever possible. For an introduction
to Python for data science, the Python Data Science Handbook provides a solid introduction, and is itself an open source
textbook available via Github [21, 22].

4.2.3 A brief note on open science, open source software and reproducibility

A large part of the motivation for creating new tools, making them open source, and standardized, is down to the nature
of the modern scientific endeavour, and the difficulty of reproducibility. In short, many projects now involve a substantial
element of analysis making use of in-house codes, which are often inaccessible to other researchers; the same may apply
to the raw datasets used. Whilst this may be justified in some cases, in general it leads to a lack of transparency and
portability for the computational and/or data component(s) of research. The Open Science movement, in part, aims to
challenge these issues - see, for further discussion, Refs. [23, 24, 25, 26, 27, 28, 29], or the Wikipeadia Open Science
page for a brief summary [30].
As noted above, this book is fully open-source, including the full book source code, the computational libraries used and
the datasets illustrated herein, and available via Quantum Metrology Vol. 3 (Github repo); this is detailed further in Sect.
5. In order to aid portability and reproducibility, Docker builds are also available: these provide a means to define a full
computational platform/stack, from the OS level and up, including all necessary dependencies and version; further details
can be found in Sect. 5.4.2.
In general, it is hoped thatmaking such toolsmore accessible, usable, and interconnected - as well asmaking computational
data generally available - will lower the barrier to entry to the field and create a useful foundation for interested researchers
to work from.
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CHAPTER

FIVE

QUANTUM METROLOGY SOFTWARE PLATFORM/ECOSYSTEM
OVERVIEW

In recent years, a unified Python codebase/ecosystem/platform has been in development to tackle various aspects of
photoionization problems, including ab initio computations and experimental data handling, and (generalised) matrix
element retrieval methods. The eponymous Quantum Metrology with Photoelectrons platform is introduced here, and is
used for the analysis herein. The main aim of the platform is to provide a unifying data layer, and analysis routines, for
photoelectron metrology, including new methods and tools, as well as a unifying bridge between these and existing tools.
Fig. 5.1 provides a general overview of some of the main tools and tasks/layers.
As of late 2022, the new parts of the platform - primarily the Photoelectron Metrology Toolkit [5] library - implement
general data handling for theory and experimental datasets (although not a full experimental analysis toolchain), along
with matrix element handling and retrieval, which will be the main topic of this volume. In the future, it is hoped that the
platform will be extended to other theoretical and experimental methods, including full experimental data handling.

5.1 Analysis components

The two main components of the platform for analysis tasks, as used herein, are:
• The Photoelectron Metrology Toolkit [5] (PEMtk) codebase aims to provide various general data handling routines
for photoionization problems. At the time ofwriting, simulation of observables and fitting routines are implemented,
along with some basic utility functions. Much of this is detailed herein, and more technical details and ongoing
documentation case be found in the PEMtk documentation [20].

• The ePSproc codebase [33, 34, 35] aims to provide methods for post-processing with ab initio radial dipole ma-
trix elements from ePolyScat (ePS) [36, 37, 38, 39], or equivalent matrix elements from other sources (dedicated
support for R-matrix results from the RMT suite [40, 41] is in development, for an overview of ab initio meth-
ods/packages see Ref. [42]). The core functionality includes the computation of AF and MF observables. Manual
computation without known matrix elements is also possible, e.g. for investigating limiting cases, or data analysis
and fitting - hence these routines also provide the backend functionality for PEMtk fitting routines. Again more
technical details can be found in the ePSproc documentation [35].

Warning: As noted elsewhere, many components of the toolkit are still in active development, and some numerical
details may change.
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Fig. 5.1: Quantum metrology with photoelectrons ecosystem overview.
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5.2 Additional tools

Other tools listed in Fig. 5.1 include:
• Quantum chemistry layer. The starting point for ab initio computations. Many tools are available, but for the
examples herein, all computations made use of Gamess (“The General Atomic and Molecular Electronic Structure
System”) [43, 44] for electronic structure computations, and inputs to ePolyScat.

– For a python-based approach, various packages are available, e.g. PySCF, PyQuante, Psi can be used for
electronic structure calculation, although note that some ePSproc [34] routines currently require Gamess files
(specifically for visualisation of orbitals).

– A range of other python tools are available, including cclib for file handling and conversion, Chemlab for
molecule wavefunction visualisations, see further notes below.

• ePolyScat (ePS) [36, 37, 38, 39] is an open-source tool for numerical computation of electron-molecule scattering
& photoionization by Lucchese & coworkers.

– All matrix elements used herein were obtained via ePS calculations. For more details see ePolyScat website
and manual [39] and Refs. [36, 37, 38].

– A Docker build is available (via the Open Photoionization Docker Stacks [19] project).
– ePS (along with a range of other computational AMO tools) is also available online via the AMOS gateway1
[45, 46, 47].

• ePSdata [48] is an open-data/open-science collection of ePS + ePSproc results.
– ePSdata collects ePS datasets, post-processed via ePSproc (Python) in Jupyter notebooks, for a full open-
data/open-science transparent pipeline.

– Source notebooks are available on the ePSdata [48] Github project repository, and notebooks + datasets via
ePSdata Zenodo [49]. Each notebook + dataset is given a Zenodo DOI for full traceability, and notebooks
are versioned on Github.

– Note: ePSdata may also be linked or mirrored on the existing ePolyScat Collected Results OSF project, but
will effectively supercede those pages.

– All results are released under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-
SA 4.0) license, and are part of an ongoing Open Science initiative.

5.3 Python ecosystem (backends, libraries and packages)

The core analysis tools, which constitute the Photoelectron Metrology Toolkit [5] platform, are themselves built with the
aid of a range of open-source python packages/libraries which handle various backend functionality. Notably, they make
use of the following key packages:

• General functionality makes use of the usual “Scientific Python” stack, in particular:
– Numpy [50] for general numerical methods and data types.
– pandas [51] for statistical methods, and various tabulation and sorting tasks.
– Scipy [52] for some special functions and computational routines, particularly spherical harmonics and
fitting routines (see below).

• General ND-array and tensor handling and manipulation makes use of the Xarray library [53, 54].
• Angular momentum functions

1 Formerly known as the AMP gateway.
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– Wigner D and 3js are currently implemented directly, or via the Spherical Functions library [55, 56], and have
been tested for consistency with the definitions in Zare (for details see the ePSproc docs [35]). The Spherical
Functions library also uses quaternion [57, 58] which implements a quaternion datatype in Numpy.

– Spherical harmonics are defined with the usual physics conventions: orthonormalised, and including the
Condon-Shortley phase. Numerically they are implemented directly or via SciPy’s sph_harm function
(see the SciPy docs for details [59]. Further manipulation and conversion between different normalisations
can be readily implemented with the pySHtools library [60, 61, 62, 63]. See Sect. 6.6.1 for examples.

– Symmetry functionality, specifically computing symmetrized harmonics 𝑋Γ𝜇∗
ℎ𝑙 (𝜃, 𝜙) (see Eq. (6.37)), makes

use of libmsym [64, 65] (symmetry coefficients) and pySHtools [60, 61, 62, 63] (general spherical
harmonic handling and conversion). See Sect. 6.6.2 for examples.

• Non-linear optimization (fitting), as used for the bootstrap retrieval protocol (to determine radial matrix elements):
– Fitting is handled via the lmfit library [66, 67], which implements and/or wraps a range of non-linear
fitting routines in Python, including classes for handling fitting parameters and outputs. In this work
only the Levenberg-Marquardt least-squares minimization method has been used, which wraps Scipy’s
least_squares functionality [59], hence this is the core numerical minimization routine for the demon-
stration cases herein. (See Chapter 7 for further discussion of fitting methods.)

– Basic parallelization for fitting routines is implemented using the xyzpy library [68], see Chapter 10 for
further details.

• For plotting a range of tools can be used, some of which are implemented/wrapped in the Photoelectron Metrology
Toolkit [5], or can be used directly with Xarray data structures, including:
– Matplotlib [69]: basic plotting, including Xarray direct plotters.
– Holoviews [70]: used for data handling and interactive plotting, Holoviews is a general plotting tool which
wraps various backends; hvplot [71] can also be used to provide additional Pandas and Xarray inte-
gration for Holoviews. Most of the plots herein use Holoviews.

– Bokeh [72]: used for interactive plots, implemented in the Photoelectron Metrology Toolkit [5] via
Holoviews wrappers/methods.

– Plotly [73]: used in the the Photoelectron Metrology Toolkit [5] and the ePSproc codebase [33, 34, 35]
for spherical polar plotting routines.

– Seaborn [74, 75]: used for statistical methods and some specialist plots and styles, particularly the lmPlot
routine in ePSproc codebase [33, 34, 35].

• Some specialist (optional) tools also make use of additional libraries, although these are not required for basic use;
in particular:

– For 3D orbital visualizations with ePSproc [34]: pyvista for 3D plotting (which itself is built onVTK), cclib for
electronic structure file handling and conversion, and methods based on Chemlab for molecule wavefunction
(orbital) computation from electronic structure files are all used on the backend.

– Numba [76] is used for numerical acceleration in some routines, although remains mainly experimental in
ePSproc at the time of writing (an exception to this is the Spherical Functions library, which does make
full use of Numba acceleration).

Code examples and further comments can be found as andwhen numerical examples are introduced in the text, particularly
in Chapter 6 and Chapter 7.
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5.4 Installation and environment set-up

5.4.1 Quick-start installation

For a basic installation, up-to-date version of Photoelectron Metrology Toolkit [5] and ePSproc codebase [33, 34, 35]
can be installed directly from Github source using pip:

pip install git+https://github.com/phockett/ePSproc.git
pip install git+https://github.com/phockett/PEMtk.git

This should also install the required dependencies, although not all of the optional packages. (Note that pip install
ePSproc will also work, and install the latest release from the Pypi repository, but this may not be fully up-to-date
compared to the Github source; PEMtk is not yet available via Pypi.)
For more details and other installation options, see the ePSproc extended installation notes online, which includes direc-
tions for virtual environments (Anaconda, Venv).
To obtain the book source, including all example notebooks, simply use Git:

git clone https://github.com/phockett/Quantum-Metrology-with-Photoelectrons-Vol3.git

Alternatively, the files can be browsed and download via the web from the Quantum Metrology Vol. 3 (Github repo),
which also includes additional setup notes.

5.4.2 Docker deployments

Docker [77] provides a useful mechanism for distribution of software as stand-alone containers (essentiallyminimal virtual
machines), including definitions and versioning for everything from the operating system layer and up. Docker containers
are both portable and reproducible, hence excellent tools for open science (see Sect. 4.2.3).
A Docker-based distribution of various codes for tackling photoionization problems is available from the Open Photoion-
ization Docker Stacks [19] project, which aims to make a range of these tools more accessible to interested researchers,
and fully cross-platform/portable. The project currently includes Docker builds for ePSproc and PEMtk (as well as
ePS and other useful tools). These are based on the Jupyter Docker Stacks project [78], which includes Jupyter Lab, and
also add all the required tools for the work illustrated herein.
A Docker container for this book is also available from the Docker Hub (and source Dockerfiles via Quantum Metrology
Vol. 3 (Github repo)). This container builds on the ePSproc and PEMtk container, and additionally includes the source
notebooks and build tools (specifically Jupyter Book [15, 16] and related tools) as discussed in Sect. 4.2.2. It is suggested
that readers interested in making use of this work start here as the easiest - and most comprehensive - methodology for
getting the tools up and running. Docker uses simply need to run docker pull epsproc/quantum-met-vol3
to obtain a copy, and docker run epsproc/quantum-met-vol3 to run - for further details and notes see the
Docker section of Quantum Metrology Vol. 3 (Github repo).
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5.4.3 Running examples

Any of the source notebooks can be run individually in a correctly configured Python/Jupyter environment (readers un-
familiar with Jupyter can find introductory materials online at jupyter.org [13]). Note that the majority of the imports
are handled by a setup script, executed at the top of each notebook, for brevity and to ensure a standardized build:

%run '../scripts/setup_notebook.py'

For additional customization this script can be modified as desired. Depending on the build environment the full path to
the script may also need to be set (the current code assumes the script will be located in the qm3-repo/doc-source/
scripts directory, and notebooks run from their source dirs, e.g. qm3-repo/doc-source/part1).

5.5 General platform discussion

Note that, at the time of writing:
• Rotational wavepacket simulation is not yet implemented in the PhotoelectronMetrology Toolkit [5], and thesemust
be obtained via other codes. An intial build of the limapack suite [79] for rotational wavepacket simulations is
currently part of the Open Photoionization Docker Stacks [19], but has yet to be used in this work.

• Fitting:
– Fitting methods have not yet been carefully optimized, with only a general non-linear least squares method
implemented. However, other methods should be easy to implement, either via the lmfit library [66, 67]
or with other Python libraries or custom codes; optimization making use of Numba should also be possible.

– Only the bootstrap retrieval protocol is currently implemented in Photoelectron Metrology Toolkit [5], along
with associated analysis routines. However, the routines were written to be general and modular, so modifi-
cation of the routines to other retrieval schemes should be fairly easy, and usually requires only (a) a function
which computes the required basis set (e.g. channel functions) and (b) observables for the problem at hand.
Examples are given in Part II for the generalised bootstrap retrieval protocol, and MF-PADs based retrieval
is also implemented in the codebase. For further details see the PEMtk documentation [20], particularly the
fitting model backends and fitting MF and other datasets pages.

• The Photoelectron Metrology Toolkit [5] codebase is currently still under heavy development, so readers may wish
to consult the ongoing PEMtk documentation [20] in future for changes and updates.

• For specific guides to various aspects of both codebases, see the relevant docs, which include full API guides. Some
particular materials of introductory interest include:

– A general quick-start demo can be found in the ePSproc documentation [35], specifically the ePSproc class
intro page.

– For more details of the data structures used, see the ePSproc documentation [35], specifically the data struc-
tures page.

Nonetheless, although both the codebase and methodologies are still under development, a range of numerical methods
have been successfully trialled (as illustrated in Part II herein), and are now available to other researchers to make use of
and build on.
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CHAPTER

SIX

THEORY

In this chapter a number of fundamentals are outlined. Only a brief introduction to the necessary physics (which already
has a rich literature) is presented, and the emphasis is instead on code and numerical examples. These are intended both
to give readers an insight into the physics, and also illustrate aspects of the Photoelectron Metrology Toolkit [5] and
ePSproc codebase [33, 34, 35] that can be used for these problems. These methods will form the basis for the numerical
reconstruction work presented in Part II.
Readers only interested in fitting problems from an experimental perspective may wish to skip most of this section; Sect.
6.6: and Sect. 6.7: should provide sufficient background for pure reconstruction problems.

6.1 Photoionization dynamics

The core physics of photoionization has been covered extensively in the literature, and only a very brief overview is
provided here with sufficient detail to introduce the metrology/reconstruction/retrieval problem; the reader is referred to
Quantum Metrology Vol. 1 [4] (and references therein) for further details and general discussion.
Photoionization can be described by the coupling of an initial state of the system to a particular final state (photoion(s)
plus free photoelectron(s)), coupled by an electric field/photon. Very generically, this can be written as a matrix element
⟨Ψ𝑓 |Γ̂(E)|Ψ𝑖⟩, where Γ̂(E) defines the light-matter coupling operator (depending on the electric field E), and Ψ𝑖, Ψ𝑓
the total wavefunctions of the initial and final states respectively.
There are many flavours of this fundamental light-matter interaction, depending on system and coupling. For metrology,
the focus is currently on the simplest case of single-photon absorption, in the weak field (or perturbative), dipolar regime,
resulting in a single photoelectron. (For more discussion of various approximations in photoionzation, see Refs. [80,
81].) In this case the core physics is well defined, and tractable (albeit non-trivial), via the separation of matrix elements
into radial (energy) and angular-momentum (geometric) terms pertaining to couplings between various elements of the
problem; the retrieval of such matrix elements is then a well-defined problem in general, achieved by making use of the
analytic geometric terms in combination with fitting methodologies for the unknown radial matrix elements, and this is
the approach explored herein. Again, more extensive background and discussion can be found in Quantum Metrology
Vol. 1 [4], and references therein. Note, however, that whilst the general approach taken here is sound, many outstanding
questions remain regarding the information content required for such an approach to be successful, and if other limitations
prevent a unique set of solutions to be found in a given case (e.g. symmetry restrictions, phase ambiguities) - such questions
are explored further herein, particularly in the case studies presented Part II.
The basic case also provides a strong foundation for extension into more complex light-matter interactions, in particular
cases with shaped laser-fields (i.e. a time-dependent coupling Γ̂(E, t)) and multi-photon processes (which require mul-
tiple matrix elements, and/or different approximations). Note, however, that non-perturbative (strong field) light-matter
interactions are, typically, not amenable to description in a separable picture in this manner. In such cases the laser field,
molecular and continuum properties are strongly coupled, and are typically treated numerically in a fully time-dependent
manner (although some separation of terms may work in some cases, depending on the system and interaction(s) at hand).
Underlying the photoelecton observables is the photoelectron continuum state |k⟩, prepared via photoionization. The
photoelectron momentum vector is denoted generally by k = 𝑘k̂, in the molecular frame (MF). The ionization matrix
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elements associated with this transition provide the set of quantum amplitudes completely defining the final continuum
scattering state,

∣Ψ𝑓⟩ = ∑ ∫ |Ψ+; k⟩ ⟨Ψ+; k|Ψ𝑓⟩ 𝑑k, (6.1)

where the sum is over states of the molecular ion |Ψ+⟩. The number of ionic states accessed depends on the nature of the
ionizing pulse and interaction. For the dipolar case,

Γ̂(E) = �̂�.E (6.2)

Hence,

⟨Ψ+; k|Ψ𝑓⟩ = ⟨Ψ+; k|�̂�.E|Ψ𝑖⟩ (6.3)

Where the notation implies a perturbative photoionization event from an initial state 𝑖 to a particular ion plus electron
state following absorption of a photon ℎ𝜈, |Ψ𝑖⟩ + ℎ𝜈→|Ψ+;k⟩, and ̂𝜇.E is the usual dipole interaction term [82], which
includes a sum over all electrons 𝑠 defined in position space as rs:

̂𝜇 = −𝑒 ∑
𝑠
rs (6.4)

The position space photoelectron wavefunction is typically expressed as a partial-wave expansion, expanded as (asymp-
totic) continuum eignstates of orbital angular momentum, with angular momentum components (𝑙, 𝑚),

Ψk(𝑟) ≡ ⟨𝑟|k⟩ = ∑
𝑙𝑚

𝑌𝑙𝑚(k̂)𝜓𝑙𝑚(𝑟, 𝑘) (6.5)

where 𝑟 are MF electronic coordinates and 𝑌𝑙𝑚(k̂) are the spherical harmonics. Note the lower-case notation for the
partial wave angular-momentum components, distinct from upper-case for the similar terms (𝐿, 𝑀) in the observables
(Sect. 6.6).
Similarly, the ionization dipole matrix elements can be separated generally into radial (energy-dependent or ‘dynamical’
terms) and geometric (angular momentum) parts (this separation is essentially theWigner-Eckart Theorem, see Ref. [83]
for general discussion), and written generally as (using notation similar to [84]):

⟨Ψ+; k|�̂�.E|Ψ𝑖⟩ = ∑
𝑙𝑚

𝛾𝑙,𝑚r𝑘,𝑙,𝑚 (6.6)

Provided that the geometric coupling parameters (the geometric part of the matrix elements) 𝛾𝑙,𝑚 - which includes the
geometric rotations into the LF arising from the dot product in Eq. (6.6) and other angular-momentum coupling terms -
are known, knowledge of the so-called radial matrix elements elements, at a given 𝑘, thus equates to a full description of
the system dynamics (and, hence, the observables). Determination of these radial matrix elements - which are complex
quantities with magnitudes and phases - is the aim of the reconstruction methodologies discussed herein (see Chpt. 7).
For the simplest treatment, the radial matrix element can be approximated as a 1-electron integral involving the initial
electronic state (orbital), and final continuum photoelectron wavefunction:

r𝑘,𝑙,𝑚 = ∫ 𝜓∗
𝑙𝑚(𝑟, 𝑘)𝑟Ψ𝑖(𝑟)𝑑𝑟 (6.7)

As noted above, the geometric terms 𝛾𝑙,𝑚 are analytical functions which can be computed for a given case - minimally
requiring knowledge of the molecular symmetry and polarization geometry, although other factors may also play a role
(see Sect. 6.3.2 for details).
The photoelectron angular distribution (PADs) at a given (𝜖, 𝑡) can then be determined by the squared projection of ∣Ψ𝑓⟩
onto a specific state |Ψ+; k⟩; very generally this can be written in terms of the energy and angle-resolved observable,
which arises as the coherent square:

𝐼(𝜖, 𝜃, 𝜙) = ⟨Ψ𝑓 |Ψ+; k⟩ ⟨Ψ+; k|Ψ𝑓⟩ (6.8)
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Expansion in terms of the components of the matrix elements as detailed above then yields a separation into radial and
angular components (see Quantum Metrology Vol. 1 [4], Sect. 2.1 for a full derivation), which can be written (at a single
energy) as (following Eq. 2.45 of Quantum Metrology Vol. 1 [4]):

𝐼(𝜃, 𝜙; 𝑘) = ∑
𝑙𝑙′

∑
𝜆𝜆′

∑
𝑚𝑚′

𝛾𝛼𝛼+𝑙𝜆𝑚𝑙′𝜆′𝑚′𝑟𝑘𝑙𝜆𝑟𝑘𝑙′𝜆′𝑒𝑖(𝜂𝑙𝜆(𝑘)−𝜂𝑙′𝜆′ (𝑘))𝑌𝑙𝑚(�̂�)𝑌 ∗
𝑙′𝑚′(�̂�) (6.9)

In this form𝛼 denotes all other quantum numbers required to define the initial state, and𝛼+ the final state of the molecular
ion. The radial matrix elements 𝑟𝑘𝑙𝜆, denote an integral over the radial part of the wavefunctions, in this case labelled by
the MF quantum numbers, and the associated scattering phase is given by 𝜂𝑙𝜆(𝑘) (i.e. the matrix elements are written in
magnitude-phase form, rather than complex form). The 𝛾 term denotes a general set of geometric coupling parameters
arising from the coherent square. A tensor form is also given herein, see Sect. 6.3.2, and includes a full breakdown of
these terms and details of numerical implementations.
Comparison of Eq. (6.9) with Eq. (6.37) indicates that the amplitudes in Eq. (6.6) also determine the observable
anisotropy paramters 𝛽𝐿,𝑀(𝜖, 𝑡) (Eq. (6.37)), which basically collect all the terms in Eq. (6.9) and the product over
spherical harmonics, into a resultant set of (𝐿, 𝑀) parameters which describe the observable PADs. (Note that the pho-
toelectron energy 𝜖 and momentum 𝑘 are used somewhat interchangeably herein, with the former usually preferred in
reference to observables.) Further discussion of the observables, including computation and form of these observables,
can be found in Sect. 6.6.
The radial matrix elements - hence observables - are a sensitive function of molecular geometry and electronic configu-
ration in general, as they depend on the overlap of the initial and final state wavefunctions, which includes the ionization
continuum (scattering wavefunction) of the photoelectron. Hence, they may be considered to be responsive to molecular
dynamics as well as photoionization dynamics, although they are formally time-independent in a Born-Oppenheimer ba-
sis. For further general discussion and examples see Ref. [85] and Quantum Metrology Vol. 1 [4]; discussions of more
complex cases with electronic and nuclear dynamics can be found in Refs. [81, 86, 87, 88].
Note, also, that in the treatment above there is no time-dependence incorporated in the notation; however, a time-
dependent treatment readily follows, and may be incorporated either as explicit time-dependent modulations in the ex-
pansion of the wavefunctions for a given case, or implicitly in the radial matrix elements. Examples of the former include,
e.g. a rotational or vibrational wavepacket, or a time-dependent laser field. The rotational wavepacket case is discussed
herein (see Sect. 6.3.2).
Typically, for reconstruction experiments, a given measurement will be selected to simplify this as much as possible by,
e.g., populating only a single ionic state (or states for which the corresponding observables are experimentally energetically-
resolvable), and with a bandwidth 𝑑k which is small enough such that the radial matrix elements can be assumed constant
over the observation window. Importantly, the angle-resolved observables are sensitive to the magnitudes and (relative)
phases of these radial matrix elements - as emphasised in the magnitude-phase form of Eq. (6.9) - and can be considered
as angular interferograms. It is the interferometric nature of the PADs which enables a phase-sensitive reconstruction
protocol to be pursued.

6.2 Symmetry in photoionization

Symmetry in photoionization is discussed in detail in Quantum MetrologyVol. 1 [4] (Sect. 2.2.3.3). Herein a brief review
is given, with a focus on using symmetry in matrix element retrieval problems. For further details, see QuantumMetrology
Vol. 1 [4]; for a more general discussion of symmetry in molecular spectroscopy see the textbook by Bunker and Jensen
[89], and the specific case of photoionization is expanded on in the work of Signorell and Merkt [90]. (For application to
symmetrized harmonics see Sect. 6.6.2.)
In general, for the dipole matrix element to be non-zero the direct product of the initial state, final state and dipole
operator symmetries must contain the totally symmetric representation of the molecular symmetry (MS) group, which is
isomorphic to the point group (PG) in rigid molecules. This general case can be written as:

Γ𝑓
𝑟𝑣𝑒 ⊗ Γ𝑑𝑖𝑝𝑜𝑙𝑒 ⊗ Γ𝑖

𝑟𝑣𝑒 ⊃ Γ𝑠 (6.10)
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Where Γ𝑟𝑣𝑒 is the rovibronic symmetry of the system (i.e. total symmetry excluding spin), with the 𝑖/𝑓 superscript
denoting initial and final states respectively. Γ𝑠 is the totally symmetric representation in the appropriate molecular
symmetry group, and Γ𝑑𝑖𝑝𝑜𝑙𝑒 is the symmetry of the dipole operator.
For the specific case of photoionization the final state is split into the symmetry species of the ion and the photoelectron
[90]:

Γ𝑒 ⊗ Γ+
𝑟𝑣𝑒 ⊗ Γ𝑑𝑖𝑝𝑜𝑙𝑒 ⊗ Γ𝑖

𝑟𝑣𝑒 ⊃ Γ𝑠 (6.11)

This is, essentially, a statement of the limiting case of Eq. (6.3) (see also alternative forms of Eqs. (6.6), (6.7)), which
defines the symmetry requirements for the overlap integral to be non-zero (although does not indicate that it will be
non-zero for a given system).
In the reconstruction experiments discussed herein, this general form can be often be further simplified. In particular,
assuming a full Born-Oppenheimer separation of dynamics, the problem can be treated within the static PG of the system,
and only the electronic state symmetries need to be taken into account. In practice, this treatment is appropriate for cases
with separable rotational wavepackets, and may also be a reasonable approximation for cases with vibronic wavepackets
in cases where the nuclear excursions are relatively small and/or can be treated as linear combinations over a set of
symmetrized basis functions. Within this approximation the general symmetry requirements can be written as:

Γ𝑒(𝑋) ⊗ Γ+
𝑒 ⊗ Γ𝑑𝑖𝑝𝑜𝑙𝑒 ⊗ Γ𝑖

𝑒 ⊃ Γ𝑠 (6.12)

And Γ𝑒(𝑋) indicates that the continuum symmetries are expressed in a basis of symmetrized harmonics (Sect. 6.6.2).
From Eq. (6.12), the set of allowed matrix elements for a given ionization event can be expressed, in terms of the allowed
set of symmetrized harmonics𝑋Γ𝜇∗

ℎ𝑙 (𝜃, 𝜙), or (equivalently) the usual partial wave basis expressed in spherical harmonics
𝑌𝑙,𝜆(𝜃, 𝜙), and a set of associated symmetrization coefficients 𝑏Γ𝜇

ℎ𝑙𝜆.
A brief numerical example is given below, and a more detailed treatment for a range of photoionization cases forms the
second half of the book, see Chapter 8 for details.

# Example following symmetrized harmonics demo

# Import class
from pemtk.sym.symHarm import symHarm

# Compute hamronics for Td, lmax=4
sym = 'D2h'
lmax=4

symObj = symHarm(sym,lmax)

# Allowed terms and mappings are given in 'dipoleSyms'
symObj.dipole['dipoleSyms']

*** Mapping coeffs to ePSproc dataType = matE
Remapped dims: {'C': 'Cont', 'mu': 'it'}
Added dim Eke
Added dim Targ
Added dim Total
Added dim mu
Added dim Type
Found dipole symmetries:
{'B1u': {'m': [0], 'pol': ['z']}, 'B2u': {'m': [-1, 1], 'pol': ['y']}, 'B3u': {'m

↪': [-1, 1], 'pol': ['x']}}
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{'B1u': {'m': [0], 'pol': ['z']},
'B2u': {'m': [-1, 1], 'pol': ['y']},
'B3u': {'m': [-1, 1], 'pol': ['x']}}

# Setting the symmetry for the neutral and ion allows direct products to be computed,
# and allowed terms to be determined.

sNeutral = 'A1g'
sIon = 'B2u'

symObj.directProductContinuum([sNeutral, sIon])

# Results are pushed to self.continuum, in dictionary and Pandas DataFrame formats,
# and can be manipulated using standard functionality.
# The subset of allowed values are also set to a separate DataFrame and list.
symObj.continuum['allowed']['PD']

<pandas.io.formats.style.Styler at 0x7ff2548f78b0>

allowed m pol result terms
Dipole Target
B1u B3g True [0] [z] [A1g] [A1g, B2u]
B2u A1g True [-1, 1] [y] [A1g] [A1g, B2u]
B3u B1g True [-1, 1] [x] [A1g] [A1g, B2u]

# Ylm basis table with the Character values limited to those defined
# in self.continuum['allowed']['PD'] Target column
symObj.displayXlm(symFilter = True)

b
l 0 1 2 3 4

Character ($\Gamma$) SALC (h) PFIX ($\mu$) m
A1g 0 0 0 1.0

1 0 0 1.0
2 0 2 1.0
3 0 0 1.0
4 0 2 1.0
5 0 4 1.0

B1g 0 0 -2 1.0
1 0 -4 1.0
2 0 -2 1.0

B3g 0 0 -1 1.0
1 0 -3 1.0
2 0 -1 1.0
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6.3 Tensor formulation of photoionization

A number of authors have treated PADs and related problems in the context of photoionization theory and matrix element
reconstruction (see Quantum Metrology Vol. 2 [9] Chpt. 8 for examples and discussion, a range of review articles can
also be found in the literature, e.g. Refs. [91, 92, 93, 94]); herein, a geometric tensor based formalism is developed,
which is close in spirit to the treatments given by Underwood and co-workers [88, 95, 96], but further separates various
sets of physical parameters into dedicated tensors; this allows for a unified theoretical and numerical treatment, where the
latter computes properties as tensor variables which can be further manipulated and investigated to give detailed insights
into various aspects of photoionization for the system at hand, and implications/effects for matrix element retrieval in a
given case. Furthermore, the tensors can readily be converted to a density matrix representation [83, 97], which is more
natural for some quantities, and also emphasizes the link to quantum state tomography and other quantum information
techniques. Much of the theoretical background, as well as application to aspects of the current problem, can be found
in the textbooks of Blum [97] and Zare [83].
Within this treatment, the observables can be defined in a series of simplified forms, emphasizing the quantities of interest
for a given problem. The most general, and simplest, form is given in Sect. 6.3.1, in terms of channel functions, and the
remainder of this section (Sect. 6.3.2 - Section 6.3.9) gives a detailed breakdown of the various components of the channel
functions, and numerical examples.

6.3.1 Channel functions

A simple form of the equations1, amenable to fitting and numerical implementation, is to write the observables in terms
of channel functions, which define the ionization continuum for a given case and set of parameters 𝑢 (e.g. defined for the
MF, or defined for a specific experimental configuration),

𝛽𝑢
𝐿,𝑀 = ∑

𝜁,𝜁′
Υ

𝑢,𝜁𝜁′

𝐿,𝑀 𝕀𝜁𝜁′

(6.13)

Where 𝜁, 𝜁′ collect all the required quantum numbers, and define all (coherent) pairs of components. The term 𝕀𝜁𝜁′

denotes the coherent square of the ionization matrix elements:

𝕀𝜁,𝜁 = 𝐼𝜁(𝜖)𝐼𝜁′∗(𝜖) (6.14)

Eq. (6.13) is effectively a convolution equation (cf. Refs. [95, 98]) with channel functions Υ𝑢,𝜁𝜁′

𝐿,𝑀 , for a given “experiment”
𝑢, summed over all terms 𝜁, 𝜁′. Aside from the change in notation (which is here chosen to match the formalism of Refs.
[36, 37, 38]), these matrix elements are essentially identical to the simplified radial matrix elements r𝑘,𝑙,𝑚 defined in Eq.
(6.6), in the case where 𝜁 = {𝑘, 𝑙, 𝑚}. Similarly, the channel functions are essentially nothing but a slightly different form
of the geometric coupling parameters of Eqs. (6.6), (6.9), incorporating all required geometric parameters. Note, also,
that the radial matrix elements used herein are usually assumed to be symmetrized (unless explicitly stated), i.e. expanded
in symmetrized harmonics per Eq. (6.37), but with any additional symmetry parameters 𝑏Γ𝜇

ℎ𝑙𝜆 incorporated into the value
of the radial matrix elements.
These complex matrix elements can also be equivalently defined in a magnitude, phase form:

𝐼𝜁(𝜖) ≡ r𝜁 ≡ 𝑟𝜁𝑒𝑖𝜙𝜁 (6.15)

This tensorial form is numerically implemented in the ePSproc [34] codebase, and is in contradistinction to standard
numerical routines in which the requisite terms are usually computed from vectorial and/or nested summations. The Pho-
toelectron Metrology Toolkit [5] codebase implements radial matrix elements retrieval based on the tensor formalism,
with pre-computation of all the geometric tensor components (channel functions) prior to a fitting protocol for matrix
element analysis, essentially a fit to Eqn. (6.13), with terms 𝐼𝜁(𝜖) as the unknowns (in magnitude, phase form per Eqn.
(6.15)). The main computational cost of a tensor-based approach is that more RAM is required to store the full set of ten-
sor variables; however, the method is computationally efficient since it is inherently parallel (as compared to a traditional,

1 Cf. the general form of Eq. (6.9). See also Quantum Metrology Vol. 2 [9] Chpt. 12 for early discussion and motivation for this formalism.
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serial loop-based solution), hence may lead to significantly faster evaluation of observables. Furthermore, the method al-
lows for the computational routines to match the formalism quite closely, and for the investigation of the properties of the
channel functions for a given problem in general terms, as well as for specific experimental cases including examination of
specific couplings/effects. (Again, this is in contrast to standard nested-loop routines, which can be somewhat opaque to
detailed interpretation, and typically implement the full computation of the observables in one monolithic computational
routine; they do, however, have significantly lower RAM requirements since the full multi-dimensional basis tensors are
not required to be stored.) Sect. 6.3.2 provides details of the tensor components of the channel functions, and the re-
mainder of this section breaks these down further, including numerical examples, and discussion of their significance for
fitting problems in specific cases.

6.3.2 Full tensor expansion

In more detail, the channel functions Υ𝑢,𝜁𝜁′

𝐿,𝑀 can be given as a set of tensors, defining each aspect of the problem. The
following equations illustrate this for the MF and LF/AF cases, fully expanding the general form of Eq. (6.13) in terms
of the relevant tensors. Further details and numerical examples are given in the following sub-sections.
For the MF:

𝛽𝜇𝑖,𝜇𝑓
𝐿,−𝑀(𝜖) = (−1)𝑀 ∑

𝑃,𝑅′,𝑅
[𝑃 ] 1

2 𝐸𝑃−𝑅( ̂𝑒; 𝜇0)

× ∑
𝑙,𝑚,𝜇

∑
𝑙′,𝑚′,𝜇′

(−1)(𝜇′−𝜇0)Λ𝑅′,𝑅(𝑅�̂�; 𝜇, 𝑃 , 𝑅, 𝑅′)𝐵𝐿,−𝑀(𝑙, 𝑙′, 𝑚, 𝑚′)

× 𝐼𝑝𝑖𝜇𝑖,𝑝𝑓𝜇𝑓
𝑙,𝑚,𝜇 (𝜖)𝐼𝑝𝑖𝜇𝑖,𝑝𝑓𝜇𝑓∗

𝑙′,𝑚′,𝜇′ (𝜖)

(6.16)

And the LF/AF as:
̄𝛽𝜇𝑖,𝜇𝑓
𝐿,−𝑀(𝜖, 𝑡) = (−1)𝑀 ∑

𝑃,𝑅′,𝑅
[𝑃 ] 1

2 𝐸𝑃−𝑅( ̂𝑒; 𝜇0)

× ∑
𝑙,𝑚,𝜇

∑
𝑙′,𝑚′,𝜇′

(−1)(𝜇′−𝜇0)Λ̄𝑅′(𝜇, 𝑃 , 𝑅′)𝐵𝐿,𝑆−𝑅′(𝑙, 𝑙′, 𝑚, 𝑚′)

× 𝐼𝑝𝑖𝜇𝑖,𝑝𝑓𝜇𝑓
𝑙,𝑚,𝜇 (𝜖)𝐼𝑝𝑖𝜇𝑖,𝑝𝑓𝜇𝑓∗

𝑙′,𝑚′,𝜇′ (𝜖) ∑
𝐾,𝑄,𝑆

Δ𝐿,𝑀(𝐾, 𝑄, 𝑆)𝐴𝐾
𝑄,𝑆(𝑡)

(6.17)

In both cases a set of geometric tensor terms are required, these terms provide details of:
• 𝐸𝑃−𝑅( ̂𝑒; 𝜇0): polarization geometry & coupling with the electric field.
• 𝐵𝐿,𝑀(𝑙, 𝑙′, 𝑚, 𝑚′): geometric coupling of the partial waves into the 𝛽𝐿,𝑀 terms (spherical tensors). Note for the
AF case the terms may be reindexed by 𝑀 = 𝑆 − 𝑅′, which allows for the projection dependence on the ADMs
(see below).

• Λ𝑅′,𝑅(𝑅�̂�; 𝜇, 𝑃 , 𝑅, 𝑅′), Λ̄𝑅′(𝜇, 𝑃 , 𝑅′): frame couplings and rotations (note slightly different terms for MF and
AF).

• Δ𝐿,𝑀(𝐾, 𝑄, 𝑆): alignment frame coupling (LF/AF only).

• 𝐴𝐾
𝑄,𝑆(𝑡): ensemble alignment described as a set of axis distribution moments (ADMs, LF/AF only). Note for a

one-photon ionization case - the traditional LF experiment - there will only be a single term, 𝐾 = 𝑄 = 𝑆 = 0,
with no time-dependence, which describes an isotropic molecular ensemble. In general only the AF is discussed
explicitly herein, but it is of note that this is identical to the traditional LF definition for this limiting case of an
isotropic ensemble.

• Square-brackets are short-hand for degeneracy terms, e.g. [𝑃 ] 1
2 = (2𝑃 + 1) 1

2 .
Finally, 𝐼𝑝𝑖𝜇𝑖,𝑝𝑓𝜇𝑓

𝑙,𝑚,𝜇 (𝜖) are the radial matrix elements, as a function of energy 𝜖. As noted above, these radial matrix
elements are essentially identical to the simplified forms 𝑟𝑘,𝑙,𝑚 defined in Eqn. (6.6), except now with additional indices
to label symmetry and polarization components defined by a set of partial-waves {𝑙, 𝑚}, for polarization component 𝜇
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(denoting the photon angular momentum components) and channels (symmetries) labelled by initial and final state indexes
(𝑝𝑖𝜇𝑖, 𝑝𝑓𝜇𝑓). The notation here follows that used by ePolyScat (ePS) [36, 37, 38, 39], and these matrix elements again
represent the quantities to be obtained numerically from data analysis, or from an ePolyScat (or similar) calculation.
Following the tensor components detailed above, the full form of the channel functions of Eq. (6.13) for the AF andMF
can be written as:

Υ
𝑢,𝜁𝜁′

𝐿,𝑀 = (−1)𝑀 [𝑃 ] 1
2 𝐸𝑃−𝑅( ̂𝑒; 𝜇0)(−1)(𝜇′−𝜇0)Λ𝑅′,𝑅(𝑅�̂�; 𝜇, 𝑃 , 𝑅, 𝑅′)

× 𝐵𝐿,−𝑀(𝑙, 𝑙′, 𝑚, 𝑚′)
(6.18)

Ῡ
𝑢,𝜁𝜁′

𝐿,𝑀 = (−1)𝑀 [𝑃 ] 1
2 𝐸𝑃−𝑅( ̂𝑒; 𝜇0)(−1)(𝜇′−𝜇0)Λ̄𝑅′(𝜇, 𝑃 , 𝑅′)

× 𝐵𝐿,𝑆−𝑅′(𝑙, 𝑙′, 𝑚, 𝑚′)Δ𝐿,𝑀(𝐾, 𝑄, 𝑆)𝐴𝐾
𝑄,𝑆(𝑡)

(6.19)

Note that, in this case as given, time-dependence arises purely from the 𝐴𝐾
𝑄,𝑆(𝑡) terms in the AF case, and the electric

field term currently describes only the photon angular momentum coupling, although can in principle also describe time-
dependent/shaped fields. Similarly, a time-dependent initial state (e.g. a vibrational wavepacket) could also describe a
time-dependent MF case.
It should be emphasized, however, that the underlying physical quantities are essentially identical in all the theoretical
approaches, with a set of coupled angular-momenta defining the geometric coupling parameters part of the photoionization
problem, despite these differences in the details of the theory and notation.
The various tensors defined above are implemented as functions in the ePSproc codebase [33, 34, 35], and further wrapped
for fitting cases in the Photoelectron Metrology Toolkit [5]. In the remainder of this section, numerical examples using
these codes are illustrated and explored. Full computational details can be found in the ePSproc documentation [35],
including extended discussion of each tensor and complete function references in the geomCalc submodule documentation.

6.3.3 Frame definitions

A conceptual overview of the LF/AF and relation to theMF, in the context of the bootstrap reconstruction protocol, can
be found in Fig. 4.1. A more detailed definition is given in Fig. 6.1, as pertains to the use of angular momentum notation
and projections. The figure shows the general use of angular momenta and associated projection terms in molecular
spectroscopy as an aid to visualising the discussion in the following sections. Note, however, that some alternative notations
are used in this volume, in particular specific projection terms may be used for certain physical quantities.
In simple cases, the frame definition for the AF is identical to that of the LF, since it is usually defined by the laser
polarization, with the distinction that an aligned molecular ensemble is additionally present. For the limiting case of an
isotropic distribution, the AF and (traditional) LF are identical. However, in cases with non-linear laser polarization,
and/or multiple pulses with different polarization vectors, the situation may be more complicated, and additional frame
rotation(s) may be required (see Fig. 6.1 inset). In such cases the reference frame may be chosen as the final ionizing laser
pulse polarization, or as a symmetry axis in the AF. For high degrees of (3D) alignment the AF may approach theMF in
the ideal case, although will usually be limited by the symmetry of the system.

6.3.4 Numerical aside: symmetry-defined channel functions

In the following sub-sections, each component is defined in detail, including numerical examples. For illustration pur-
poses, the numerical example uses a minimal set of assumptions, and is defined initially purely by symmetry, although
further terms may be required for computation of some of the geometric terms and are discussed where required. A
fuller discussion of symmetry considerations in photoionization can be found in Sect. 6.2, and discussion of symmetrized
harmonics in Sect. 6.6.2.
For this example, the 𝐷2ℎ point group is used, representing a fairly general case of a planar asymmetric top system, e.g.
ethylene (𝐶2𝐻4). Note that, in this case, the symmetrization coefficients (𝑏Γ𝜇

ℎ𝑙𝜆, see Eqn. (6.37)) have the property that
𝜇 = 0 only, and the ℎ index is redundant, since it maps uniquely to 𝑙 - see Fig. 6.2 - so these indexes can be dropped. Note,
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Fig. 6.1: Reference frame and angular momentum definitions for the Laboratory frame (LF) and Molecular frame (MF),
using a general notation frommolecular spectroscopy. In this case the LF shows an angular momentum vectors 𝐽 and 𝑙; 𝐽
is usually used to define rotational (or sometimes total) angular momentum of the system, and 𝑙 the electronic component.
Projection terms onto the LF 𝑧-axis, 𝑀𝐽 and 𝑚𝑙 are also indicated. In the MF equivalent angular momentum terms
are shown, with projections 𝐾 and 𝜆 onto the molecular symmetry axis. The insert shows a frame rotation (𝑥, 𝑦, 𝑧) ←
(𝑥′, 𝑦′, 𝑧′), defined by a set of Euler angles 𝑅�̂� = {𝜒, Θ, Φ}, and illustrating the rotation of the 𝑧-axis (defined by the
electric field vector 𝐸), and a spherical harmonic function in the (𝑥′, 𝑦′, 𝑧′) frame. See also Fig. 4.1. Figure reproduced
from Quantum Metrology Vol. 1 [4], Fig. 2.3 - note that some alternative notations are used in this volume.
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also, the unfortunate convention that the label 𝜇 is used for multiple indexes; to avoid ambiguity this term is remapped to
𝜇𝑋 in the numerics below. However, in this case, since 𝜇 can be dropped from the symmetrization coefficients, there is
actually no ambiguity in later usage.

Note: Full tabulations of the parameters available in HTML or notebook formats only.

#*** Setup symmetry-defined matrix elements using PEMtk

# Import class
from pemtk.sym.symHarm import symHarm

#*** Compute hamronics for Td, lmax=4
sym = 'D2h'
lmax=4

lmaxPlot = 2 # Set lmaxPlot for subselection on plots later.

# Create symHarm object with given settings,
# this will also compute the symmetrized harmonics
symObj = symHarm(sym,lmax)

# Display results (real harmonics)
symObj.displayXlm(setCols='h') #, dropLevels='mu')

# Glue version for JupyterBook output
# As above, but with PD object return and glue.
glue("D2hXlm",symObj.displayXlm(setCols='h',returnPD=True), display=False)

To compute basis tensors from these symmetry coefficients, they can be converted to the standard radial matrix elements
format used in the Photoelectron Metrology Toolkit [5] (see Sect. 9.3.4 for further discussion of the numerical imple-
mentation), and used with the standard routines. These are demonstrated below, for two flavours - the base ePSproc
[34] routine for computation of AF-PADs, and the Photoelectron Metrology Toolkit [5] fitting routine which wraps this
functionality. Note that all tensors are stored as Xarray [53, 54] objects, which allow for easy numerical manipulation,
subselection etc.

#*** Compute basis functions for given matrix elements using PEMtk fit class
# This illustration uses the symmetrized matrix elements set above

#*** To use ePSproc/PEMtk classes,
# these values can be converted to ePSproc BLM data type...
# Run conversion - the default is to set the coeffs to the 'BLM' data type,
# additional dim mappings can also be set.
# Outputs are set to symObj.coeffs[dataType]
dimMap = {'C':'Cont','mu':'muX'}
symObj.toePSproc(dimMap=dimMap)

# Run conversion with a different dimMap & dataType
# Outputs are set to symObj.coeffs[dataType]
dataType = 'matE'
symObj.toePSproc(dimMap = dimMap, dataType=dataType)

(continues on next page)
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b
h 0 1 2 3 4 5

Character ($\Gamma$) PFIX ($\mu$) l m
A1g 0 0 0 1.0

2 0 1.0
2 1.0

4 0 1.0
2 1.0
4 1.0

A1u 0 3 -2 1.0
B1g 0 2 -2 1.0

4 -4 1.0
-2 1.0

B1u 0 1 0 1.0
3 0 1.0

2 1.0
B2g 0 2 1 1.0

4 1 1.0
3 1.0

B2u 0 1 -1 1.0
3 -3 1.0

-1 1.0
B3g 0 2 -1 1.0

4 -3 1.0
-1 1.0

B3u 0 1 1 1.0
3 1 1.0

3 1.0

Fig. 6.2: Symmetrized harmonics coefficients (𝑏Γ𝜇
ℎ𝑙𝜆, see Eqn. (6.37)) for D2h symmetry (𝑙𝑚𝑎𝑥 =4) generated with the

Photoelectron Metrology Toolkit [5] wrapper for libmsym [64, 65]. Note that, in this case, the coeffcients have the
property that 𝜇 = 0 only, and the ℎ index is redundant (maps uniquely to 𝑙).
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(continued from previous page)

#*** Setup class object
data = pemtkFit()

# Set to new key in data class
dataKey = sym
data.data[dataKey] = {}

# Set data.data[dataKey][dataType] from cases set above
# This pushes the symmetrized coeffs computed above to the PEMtk fit class
# object for general use with PEMtk methods.
# Here set 'matE' for use as matrix elements, and 'BLM' for pad plotting routines.
for dataType in ['matE','BLM']:

# Select expansion in complex harmonics, and sum redundant dims
data.data[dataKey][dataType] = symObj.coeffs[dataType]['b (comp)'].sum(['h','muX

↪'])
# Propagate attrs
data.data[dataKey][dataType].attrs = symObj.coeffs[dataType].attrs

# Set data by key
# data.subKey is the default location used by the PEMtk routines
data.subKey = dataKey

#*** Compute basis function - two flavours
# Using PEMtk `afblmMatEfit` method
# - this only returns the product basis set as used for fitting
# See the docs for more details, https://pemtk.readthedocs.io
phaseConvention='S' # For consistency in the method, explicitly set the

# phase convention used here ('S' = standard, 'E' = ePS).
BetaNormX, basisProduct = data.afblmMatEfit(selDims={},

sqThres=False,
phaseConvention=phaseConvention)

# Using ePSproc directly - this includes full basis return if specified
# See the docs for more details, https://epsproc.readthedocs.io
BetaNormX2, basisFull = ep.geomFunc.afblmXprod(data.data[data.subKey]['matE'],

basisReturn = 'Full',
thres=None, selDims={},
sqThres=False,
phaseConvention=phaseConvention)

# The basis dictionary contains various numerical parameters, these are investigated␣
↪below.

# See also the ePSproc docs at
# https://epsproc.readthedocs.io/en/latest/methods/geometric_method_dev_260220_090420_

↪tidy.html
print(f"Product basis elements: {basisProduct.keys()}")
print(f"Full basis elements: {basisFull.keys()}")

# Use full basis for following sections
basis = basisFull

*** Mapping coeffs to ePSproc dataType = BLM
Remapped dims: {'C': 'Cont', 'mu': 'muX'}

(continues on next page)
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(continued from previous page)

Added dim Eke
Added dim P
Added dim T
Added dim C
*** Mapping coeffs to ePSproc dataType = matE
Remapped dims: {'C': 'Cont', 'mu': 'muX'}
Added dim Eke
Added dim Targ
Added dim Total
Added dim mu
Added dim it
Added dim Type
Product basis elements: dict_keys(['BLMtableResort', 'polProd', 'phaseConvention',

↪'BLMRenorm'])
Full basis elements: dict_keys(['QNs', 'EPRX', 'lambdaTerm', 'BLMtable',

↪'BLMtableResort', 'AFterm', 'AKQS', 'polProd', 'phaseConvention', 'BLMRenorm',
↪'matEmult'])

6.3.5 Matrix element geometric coupling term 𝐵𝐿,𝑀

The coupling of the partial-waves as coherent pairs, |𝑙, 𝑚⟩ and |𝑙′, 𝑚′⟩, into the observable set of {𝐿, 𝑀} is defined by
a tensor contraction with two 3j terms:

𝐵𝐿,𝑀 = (−1)𝑚 ((2𝑙 + 1)(2𝑙′ + 1)(2𝐿 + 1)
4𝜋 )

1/2
( 𝑙 𝑙′ 𝐿

0 0 0 ) ( 𝑙 𝑙′ 𝐿
−𝑚 𝑚′ 𝑀 ) (6.20)

Note that this term is equivalent, effectively, to a triple integral over spherical harmonics (e.g. Eq. 3.119 in Zare [83]):

2𝜋

∫
0

𝜋

∫
0

𝑌𝐽3𝑀3
(𝜃, 𝜙)𝑌𝐽2𝑀2

(𝜃, 𝜙)𝑌𝐽1𝑀1
(𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙 = ((2𝐽1 + 1)(2𝐽2 + 1)(2𝐽3 + 1)

4𝜋 )
1/2

× ( 𝐽1 𝐽2 𝐽3
0 0 0 ) ( 𝐽1 𝐽2 𝐽3

𝑀1 𝑀2 𝑀3
)

And a similar term appears in the contraction over a pair of harmonics into a resultant harmonic (e.g. Eqs. C.21, C.22 in
Blum [97]) - this is how the term arises in the derivation of the observables.

𝑌𝐽1𝑀1
(𝜃, 𝜙)𝑌𝐽2𝑀2

(𝜃, 𝜙) = ∑
𝐽3𝑀3

((2𝐽1 + 1)(2𝐽2 + 1)(2𝐽3 + 1)
4𝜋 )

1/2

× ( 𝐽1 𝐽2 𝐽3
0 0 0 ) ( 𝐽1 𝐽2 𝐽3

𝑀1 𝑀2 𝑀3
) 𝑌 ∗

𝐽3𝑀3
(𝜃, 𝜙)

Note also some definitions use conjugate spherical harmonics, which can be converted as, e.g., Eq. C.21 in Blum [97]:

𝛽𝜇𝑖,𝜇𝑓
𝐿,𝑀 𝑌 ∗

𝐿𝑀(𝜃�̂�, 𝜙�̂�) = 𝛽𝜇𝑖,𝜇𝑓
𝐿,−𝑀(−1)𝑀𝑌𝐿,−𝑀(𝜃�̂�, 𝜙�̂�) (6.21)

In the current Photoelectron Metrology Toolkit [5] codebase, the relevant basis item can be inspected as below, in order
to illustrate the sensitivity of different (𝐿, 𝑀) terms to the matrix element products. In many typical cases, however, this
term is restricted to only 𝑀 = 0 components overall by other geometric factors (see below).
The code cells below illustrate this for the current example case, and Fig. 6.3 offers a general summary. In general, this is a
convenient way to visualize the selection rules into the observable: for instance, only terms 𝑙 = 𝑙′ and𝑚 = −𝑚′ contribute
to the overall photoionization cross-section term (𝐿 = 0, 𝑀 = 0), and the maximum observable 𝐿𝑚𝑎𝑥 = 2𝑙𝑚𝑎𝑥.
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However, since these terms are fairly simply followed algebraically in this case, via the rules inherent in the 3𝑗 product
(Eq. (6.20)), this is not particularly insightful (although useful pedagogically). These visualizations will become more
useful when dealing with real sets of matrix elements, and specific polarization geometries, which will further modulate
or restrict the 𝐵𝐿,𝑀 terms.
Numerically, various standard functions may be used to quickly gain deeper insight, for example min/max, averages etc.
Such considerationsmay provide a quick sanity-check for a given case, andmay prove useful when planning experiments to
investigate particular aspects or channels of a given system. Other properties of the basis functionsmay also be interrogated
numerically; for instance, correlation maps provide an alternative way to check which terms are strongly correlated or
coupled, or will dominate a given aspect of the observable.

#*** Tabulate basis

basisKey = 'BLMtableResort' # Key for BLM basis set

# Reformat basis for display (optional)
stackDims = {'LM':['L','M']}
basisPlot = basis[basisKey].rename({'S-Rp':'M'}).stack(stackDims)

# Convert to Pandas, use ep.multiDimXrToPD as a general multi-dimensional restacker
pd, _ = ep.multiDimXrToPD(basisPlot, colDims=stackDims)

# Summarise properties and tabulate via Pandas Describe
pd.describe().T

#*** Plot BLM terms for basis set - basic case
basisKey = 'BLMtableResort'

# Basic plot
ep.lmPlot(basisPlot, xDim=stackDims); # Basic plot with all terms

#*** Plot BLM terms for basis set - plot with some additional figure formatting␣
↪options

# Formatting options
titleString=f'$B_{{L,M}}$ terms for {sym}, lmax={lmaxPlot}'
titleDetails=True
labelRound = 1
catLegend=False
labelCols = [1,1]

# cmap = None for default.
# cmap = 'vlag'

# lmPlot with various options
*_, gFig = ep.lmPlot(basisPlot.where((basisPlot.l<=lmaxPlot)

& (basisPlot.lp<=lmaxPlot)),
xDim=stackDims, pType = 'r',
cmap=cmap, labelRound = labelRound,
catLegend=catLegend,
titleString=titleString, titleDetails=titleDetails,
labelCols = labelCols);

# Glue figure
glue("lmPlot_BLM_basis_D2h", gFig.fig, display=False)
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Fig. 6.3: Example 𝐵𝐿,𝑀 basis functions for D2h symmetry. Note figure is truncated to 𝑙𝑚𝑎𝑥 = 𝑙′𝑚𝑎𝑥 =2 for clarity.
The colour-map (top left) shows the (real) values of the allowed terms shown in the main panel of the figure. The key
(middle left) indicates categorical colour-mapping for the (𝑙, 𝑙′, 𝑚, 𝑚′) terms corresponding to the left-hand side-panel
of the main plot, which illustrates the quantum numbers for each row.
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6.3.6 Electric field geometric coupling term 𝐸𝑃,𝑅( ̂𝑒; 𝜇0)

The coupling of two 1-photon terms (which arises in the square of the ionization matrix element as per Eq. (6.9)) can be
written as a tensor contraction:

𝐸𝑃,𝑅( ̂𝑒) = [𝑒 ⊗ 𝑒∗]𝑃𝑅 = [𝑃 ] 1
2 ∑

𝑝
(−1)𝑅 ( 1 1 𝑃

𝑝 𝑅 − 𝑝 −𝑅 ) 𝑒𝑝𝑒∗
𝑅−𝑝 (6.22)

Where:
• 𝑒𝑝 and 𝑒𝑅−𝑝 define the field strengths for the polarizations 𝑝 and 𝑅 −𝑝, which are coupled into the spherical tensor

𝐸𝑃𝑅;

• square-brackets indicate degeneracy terms, e.g. [𝑃 ] 1
2 = (2𝑃 + 1) 1

2 ;
• in the literature LF/AF field projection terms are usually denoted 𝑝 (as above) or 𝜇0 (used as a more general
angular-momentum projection notation). For the MF case photon projection terms are usually denoted by 𝑞 or 𝜇.

• The polarization vector or propagation direction is usually chosen to define the LF/AF z-axis for linear or non-
linearly polarized light respectively (see Fig. 4.1 for the linear example), or defined relative to the molecular sym-
metry axis in the MF. (See Sect. 6.3.3 for further details.)

• For a given case the polarization geometry may define a single projection term, or there may be multiple terms
allowed. For instance, linearly polarized light is defined by 𝜇0 = 0 only, resulting in non-zero values for just the
𝑃 = 0, 2 terms in Eq. (6.22), i.e. product terms 𝐸0,0, 𝐸2,0 are allowed. Non-linearly polarized light may contain
all allowed components (𝜇0 = −1, 0, 1). For theMF case, allowed components may be defined directly in theMF
or determined via a frame transformation from the LF - see Sect. 6.3.7.

• Note this notation implicitly describes only the time-independent photon angular momentum coupling, but time-
dependent/shaped laser fields can be readily incorporated by allowing for time-dependent fields 𝑒𝑝(𝑡) (see, for
instance, Ref. [99]). (Support for this is planned in ePSproc [34], as of v1.3.2 this is in the development and
testing phase.)

To derive this result, one can start from a general spherical tensor direct product, e.g., Eq. 5.36 in Zare [83]; for two
first-rank tensors (e.g. electric field vectors) this contraction is given explicitly by Eq. 5.40 in Zare [83]:

[𝐴(1) ⊗ 𝐵(1)]𝑘𝑞 = ∑
𝑚

⟨1𝑚, 1𝑞 − 𝑚|𝑘𝑞⟩𝐴(1, 𝑚)𝐵(1, 𝑞 − 𝑚) (6.23)

This can be converted to 3𝑗 form:

[𝐴(1) ⊗ 𝐵(1)]𝑘𝑞 = ∑
𝑚

(−1)𝑞[𝑘]1/2 ( 1 1 𝑘
𝑚 𝑞 − 𝑚 −𝑞 ) 𝐴(1, 𝑚)𝐵(1, 𝑞 − 𝑚) (6.24)

And the appropriate E-field terms substituted in to arrive at equation Eq. (6.22).
As before, we can visualise these values with the Photoelectron Metrology Toolkit [5], as illustrated in the following code
block, and corresponding output Fig. 6.4.

#*** For illustration, recompute EPR term for default case.
EPRX = ep.geomCalc.EPR(form = 'xarray')

# Set parameters to restack the Xarray into (L,M) pairs
plotDimsRed = ['p', 'R-p']
xDim = {'PR':['P','R']}

# Plot with ep.lmPlot(), real values
*_, gFig = ep.lmPlot(EPRX, plotDims=plotDimsRed, xDim=xDim,

pType = 'r',

(continues on next page)
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(continued from previous page)

titleString=f'$E_{{P,R}}$ terms (all cases).',
labelCols = labelCols)

# Alternative version summed over l,l',m
# *_, gFig = ep.lmPlot(EPRX.unstack().sum(['l','lp','R-p']), xDim=xDim, pType = 'r')

# Glue figure
glue("lmPlot_EPR_basis", gFig.fig)

6.3.7 Molecular frame projection term Λ

For the molecular frame case, the coupling between the LF and MF can be defined by a projection term, Λ𝑅′,𝑅(𝑅�̂�):

Λ𝑅′,𝑅(𝑅�̂�) = (−1)(𝑅′) ( 1 1 𝑃
𝜇 −𝜇′ 𝑅′ ) 𝐷𝑃

−𝑅′,−𝑅(𝑅�̂�) (6.25)

This is similar to the 𝐸𝑃,𝑅 term, and essentially rotates it into theMF, defining the projections of the polarization vector
(photon angular momentum) 𝜇 into theMF for a given molecular orientation (frame rotation) defined by a set of rotations.
The frame rotation is parameterized by a set of Euler angles, 𝑅�̂� = {𝜒, Θ, Φ}, with projections given byWigner rotation
matrix elements 𝐷𝑃

−𝑅′,−𝑅(𝑅�̂�).
For the LF/AF case, the same term appears but in a simplified form:

Λ̄𝑅′ = (−1)(𝑅′) ( 1 1 𝑃
𝜇 −𝜇′ 𝑅′ ) ≡ Λ𝑅′,𝑅′(𝑅�̂� = 0) (6.26)

This form pertains since - in the LF/AF case - there is no specific frame transformation defined (i.e. there is no single
molecular orientation defined in relation to the light polarization, rather a distribution as defined by the ADMs), but the
total angular momentum coupling of the photon terms is still required in the equations.
Numerically, the function is calculated for a specified set of orientations, which default to the standard set of (𝑥, 𝑦, 𝑧)MF
polarization cases in the Photoelectron Metrology Toolkit [5] routines. For the LF/AF case, this term is still used, but
restricted to𝑅�̂� = (0, 0, 0) = 𝑧, i.e. no frame rotation relative to the LF 𝐸𝑃,𝑅 definition. In some cases additional frame
transformations may be required here to define, e.g., the use of the propagation axis as the reference 𝑧-axis for circularly
or elliptically polarized light. (See Sect. 6.3.3 for further discussion.)

6.3.8 Alignment tensor Δ𝐿,𝑀(𝐾, 𝑄, 𝑆)

Finally, for the LF/AF case, the alignment tensor couples the molecular axis ensemble (defined as a set of ADMs, see
Sect. 6.5 for details) and the photoionization multipole terms into the final observable.

Δ𝐿,𝑀(𝐾, 𝑄, 𝑆) = (2𝐾 + 1)1/2(−1)𝐾+𝑄 ( 𝑃 𝐾 𝐿
𝑅 −𝑄 −𝑀 ) ( 𝑃 𝐾 𝐿

𝑅′ −𝑆 𝑆 − 𝑅′ ) (6.27)

In the full equations for the observable, this term appears in a summation with the ADMs, as:

Δ̃𝐿,𝑀(𝑡) = ∑
𝐾,𝑄,𝑆

Δ𝐿,𝑀(𝐾, 𝑄, 𝑆)𝐴𝐾
𝑄,𝑆(𝑡) (6.28)

This summed alignment term can be considered, essentially, as a (coherent) geometric averaging of the MF observable
weighted by the axis distribution in the AF (for more on the axis averaging as a convolution, see Refs. [4, 96]); equiva-
lently, the averaging can be considered as a purely angular-momentum coupling effect, which accounts for all contributing
moments of the various aspects of the system, and defines the allowed projections onto the final observables in the LF.
Mappings of these terms are investigated numerically below, for some examplar cases.
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Fig. 6.4: Example 𝐸𝑃,𝑅 basis functions. Note that for linearly polarised light 𝑝 = 𝑅 − 𝑝 = 0 only, hence only the terms
𝐸0,0 and 𝐸2,0 are non-zero in this case. For non-linearly polarised cases many other terms are allowed. The colour-map
(top left) shows the (real) values of the allowed terms shown in the main panel of the figure. The first key (middle left)
indicates categorical colour-mapping for the (𝑙, 𝑙′) terms (and 𝑙 = 𝑙′ = 1 only in this case), and the second (“Categories”)
key indicates the colour-mapping for the remaining terms. The keys correspond to the left-hand side-panel of the main
plot, which indicates the quantum numbers for each row.
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Basic cases

Fig. 6.5 illustrates the alignment tensor Δ𝐿,𝑀(𝐾, 𝑄, 𝑆) for some basic cases, and values are also tabulated in Table 6.6.
Note that for illustration purposes the term is subselected with 𝐾 = 0, 𝑄 = 0, 𝑆 = 0 and 𝑅′ = 0; 𝑅 ≠ 0 terms are
included to illustrate the elliptically-polarized case, which can give rise to non-zero 𝑀 terms.
For the simplest case of an unaligned ensemble, this term is restricted to 𝐾 = 𝑄 = 𝑆 = 0, i.e. Δ𝐿,𝑀(0, 0, 0); for
single-photon ionization with linearly-polarized light (𝑝 = 0, hence 𝑃 = 0, 2 and 𝑅 = 𝑅′ = 0), this has non-zero values
for 𝐿 = 0, 2 and 𝑀 = 0 only. Typically, this simplest case is synonymous with standard LF results, and maintains
cylindrical and up-down symmetry in the observable.
For circularly polarized light (𝑝 = ±1, hence 𝑃 = 0, 1, 2 and 𝑅 = 𝑅′ = 0), odd-𝐿 is allowed, signifying up/down
symmetry breaking in the observable (where up/down pertains to the propagation direction of the light, conventionally
the 𝑧-axis for non-linear polarizations, see Sect. 6.3.3). For elliptically polarized light, mixing of terms with different
𝑝 allows for non-zero 𝑅 terms (see Eq. (6.22)), hence non-zero 𝑀 is allowed (see Eq. (6.27)), signifying breaking of
cylindrical symmetry in the observable is allowed. Note, however, that non-zero values here do not indicate that such
effects will be observed in any given case, only that they may be (or, at least, are not restricted by the alignment tensor).

#*** Set range of ADMs for test as time-dependent values (linear ramps)

# Set ADMs for increasing alignment...
# Note that delta term is independent of the absolute values of the ADMs(t),
# but does use this term to define limits on some quantum numbers.

tPoints = 10 # 10 t-points
inputADMs = [[0,0,0, *np.ones(tPoints)],

[2,0,0, *np.linspace(0,1,tPoints)],
[4,0,0, *np.linspace(0,0.5,tPoints)],
[6,0,0, *np.linspace(0,0.3,tPoints)],
[8,0,0, *np.linspace(0,0.2,tPoints)]]

# Set to AKQS parameters in Xarray
AKQS = ep.setADMs(ADMs = inputADMs)

# Use default EPR term - note this computes for all pol states, p=[-1,0,1]
EPR = ep.geomCalc.EPR(form='xarray')

#*** Compute alignment terms
AFterm, DeltaTerm = ep.geomCalc.deltaLMKQS(EPR, AKQS)

#*** Plot Delta term with subselections and formatting
xDim = {'LM':['L','M']}
daPlot, daPlotpd, legendList, gFig = ep.lmPlot(

DeltaTerm.sel(K=0,Q=0,S=0,Rp=0).sel({'S-Rp':0}),
xDim = xDim,
pType = 'r', squeeze = False, thres=None,
titleString="$\Delta(0,0,0)$ term ($R'=0$ only)",
# Set dim mapping to use P,R with "l,m" colourmap
dimMaps={'lDims':['P'],'mDims':'R'},
labelCols=labelCols,
catLegend=False)

# Glue versions for JupyterBook output
glue("deltaTerm000-lmPlot", gFig.fig, display=False)
# As above, but with PD object return and glue.
glue("deltaTerm000-tab",daPlotpd.fillna(''), display=False)
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Fig. 6.5: Example Δ𝐿,𝑀(0, 0, 0) basis functions (see also Fig. 6.6). For illustration purposes, the plot only shows terms
for 𝑅′ = 0. See main text for discussion.
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L 0 1 2
M 0 -1 0 1 -2 -1 0 1 2

P R
0 0 1.0
1 -1 -0.333

0 0.333
1 -0.333

2 -2 0.2
-1 -0.2
0 0.2
1 -0.2
2 0.2

Fig. 6.6: Example Δ𝐿,𝑀(0, 0, 0) basis functions (see also Fig. 6.5). For illustration purposes, the table only shows terms
for 𝑅′ = 0. See main text for discussion.

#*** Plot ADMs
*_, ADMFig = ep.lmPlot(AKQS, xDim = 't', pType = 'r',

labelCols=labelCols, catLegend=False,
cmap='vlag',
titleString='ADMs (linear ramp example)')

#*** Plot AF term with subselection
*_, AFFig = ep.lmPlot(AFterm.sel(R=0).sel(Rp=0).sel({'S-Rp':0}),

xDim = 't', pType = 'r',
labelCols=labelCols,
cmap='vlag',
titleString='$\\tilde{\Delta}_{L,M}(t)$ (linear ramp example)')

# Glue versions for JupyterBook output
glue("ADMs-linearRamp-lmPlot", ADMFig.fig, display=False)
glue("AFterm-linearRamp-lmPlot", AFFig.fig, display=False)

For cases with aligned molecular ensembles, additional terms can similarly appear depending on the alignment as well as
the properties of the ionizing radiation. Again, the types of terms follow some typical patterns dependent on the symmetry
of the ensemble, as well as the order of the terms allowed. For instance, 𝐿𝑚𝑎𝑥 = 𝑃𝑚𝑎𝑥 +𝐾𝑚𝑎𝑥 = 2+𝐾𝑚𝑎𝑥, and𝐾𝑚𝑎𝑥
represents the overall degree of alignment of the ensemble; hence an aligned ensemble may be signified by higher-order
terms in the observable (if allowed by other terms in the overall expansion) or, equivalently, aligning an ensemble prior
to ionization can be used as a way to control which terms contribute to the alignment tensor.
Since this is a coherent averaging, additional interferences can also appear in the AF - or be restricted in the AF -
depending on these geometric parameters and the contributingmatrix elements. Additionally, any effects modulating these
terms, for instance a time-dependent alignment (rotational wavepacket), vibronic dynamics (vibrational and/or electronic
wavepacket), time-dependent laser field (control field) may be anticipated to lead to both changes in these terms and,
potentially, interesting effects in the observable. Such effects have been discussed in more detail in Quantum Metrology
Vol. 2 [9], and in the current case the focus is purely on rotational wavepackets.

Fig. 6.8 shows Δ̃𝐿,𝑀(𝑡) for various choices of alignment (as per the ADMs shown in Fig. 6.7), and illustrates some of the
general features discussed. Note, for example:

• 𝐿𝑚𝑎𝑥 varies with alignment; in the demonstration case 𝐾𝑚𝑎𝑥 = 8 at later times, resulting in 𝐿𝑚𝑎𝑥 = 10, whilst
at 𝑡 = 0 𝐾𝑚𝑎𝑥 = 0, thus restricting terms to 𝐿𝑚𝑎𝑥 = 2.

6.3. Tensor formulation of photoionization 49



Quantum Metrology with Photoelectrons Vol. 3 *Analysis methodologies*

Fig. 6.7: Example ADMs used for AF basis function example (see Fig. 6.8). These ADMs essentially show an increasing
degree of alignment with the 𝑡 parameter, with high-order terms increasing at later 𝑡.
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Fig. 6.8: Example of Δ̃𝐿,𝑀(𝑡) basis values for various choices of alignment (as per Fig. 6.7). The ADMs essentially show
an increasing degree of alignment with the 𝑡 parameter, with high-order terms increasing at later 𝑡, and this is reflected in
the Δ̃𝐿,𝑀(𝑡) terms with higher-order 𝐿 appearing at later 𝑡.
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• Odd-𝐿 values are correlated with 𝑃 = 1 terms.
• Only 𝑀 = 0 terms are allowed in this case (𝑄 = 𝑆 = 0).

3D alignments and symmetry breaking

As discussed above, for the case where 𝑄 ≠ 0 and/or 𝑆 ≠ 0 additional symmetry breaking can occur. It is simple to
examine these effects numerically via changing the trial ADMs used to determine Δ̃𝐿,𝑀(𝑡) (Eq. (6.28)), as illustrated in
the following code block. (Realistic cases can be found in the case-studies presented in Part II.)

#*** Set range of ADMs for test as time-dependent values (linear ramps),
# including some trial "3D" alignment terms

# Set ADMs for increasing alignment...
# Here add some (arb) terms for Q,S non-zero (indexed as [K,Q,S, ADMs(t)])
tPoints = 10
inputADMs3D = [[0,0,0, *np.ones(tPoints)],

[2,0,0, *np.linspace(0,1,tPoints)],
[2,0,2, *np.linspace(0,0.5,tPoints)],
[2,2,0, *np.linspace(0,0.5,tPoints)],
[2,2,2, *np.linspace(0,0.8,tPoints)]]

# Set to AKQS parameters in an Xarray
AKQS = ep.setADMs(ADMs = inputADMs3D)

# Compute alignment terms
AFterm, DeltaTerm = ep.geomCalc.deltaLMKQS(EPR, AKQS)

#*** Plot subsection, L<=2, and sum over Rp and S-Rp terms
titleString = ('$\\tilde{\Delta}_{L,M}(t)$ (3D alignment ramp example).'

'\n Summed over $R\'$ and $S-R\'$ terms.')
*_, gFig = ep.lmPlot(AFterm.where(AFterm.L<=2).sum('Rp').sum('S-Rp'),

xDim = 't', pType = 'r',
cmap='vlag',
titleString=titleString)

# Glue versions for JupyterBook output
glue("ADMs-3DlinearRamp-lmPlot", gFig.fig, display=False)

For illustration purposes, Fig. 6.9 shows a subselection of the Δ̃𝐿,𝑀(𝑡) basis values, indicating some of the key features
in the full 3D case, subselected for 𝐿 ≤ 2 and summed over 𝑅′ and 𝑆 − 𝑅′ terms. Note, in particular, the presence
of 𝑀 ≠ 0 terms in general, and a complicated dependence of the allowed terms on the alignment, which may increase,
decrease, or even change sign. As previously, these behaviours are generally useful for understanding specific cases or
planning experiments for specific systems; this is explored further in Part II which focuses on the results for particular
molecules (hence symmetries and sets of matrix elements).
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Fig. 6.9: Example Δ̃𝐿,𝑀(𝑡) basis values for various choices of “3D” alignment, i.e. including some 𝐾 ≠ 0 and 𝑆 ≠ 0
terms. Note, in particular, the presence of 𝑀 ≠ 0 terms in general, and a complicated dependence of the allowed terms
on the alignment (ADMs), which may increase, decrease, or even change sign for a given 𝐿, 𝑀 .
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6.3.9 Tensor product terms

Following the above, further resultant terms can also be examined, up to and including the full channel functions Υ𝑢,𝜁𝜁′

𝐿,𝑀
(see Eqn. (6.13)) for a given case. Numerically these are all implemented in the main ePSproc codebase [33, 34, 35],
and can be returned by these functions for inspection - the full basis set already defined includes some of these products.
Custom tensor product terms are also readily computed with the codebase, with tensor multiplications handled natively
by the Xarray [53, 54] data objects (for more details of the data structures used, see the ePSproc documentation [35],
specifically the data structures page).
The main product basis returned, labelled polProd in the output dictionary, contains the tensor product of the polari-
sation and alignment terms, Λ𝑅 ⊗ 𝐸𝑃𝑅( ̂𝑒) ⊗ Δ𝐿,𝑀(𝐾, 𝑄, 𝑆) ⊗ 𝐴𝐾

𝑄,𝑆(𝑡), expanded over all quantum numbers (see full
definition here). This term, therefore, incorporates all of the dependence (or response) of the AF-𝛽𝐿𝑀s on the polarisa-
tion state, and the axis distribution. Example results, making use of the linear-ramp ADMs of Sect. 6.3.8 are illustrated
in Fig. 6.10.

The full channel (response) functions Υ𝑢,𝜁𝜁′

𝐿,𝑀 as defined in (6.18) and (6.19) can be determined by the product of this
term with the 𝐵𝐿,𝑀 tensor. This is essentially the complete geometric basis set, hence equivalent to the AF-𝛽𝐿𝑀 if
the ionization matrix elements were set to unity. This illustrates not only the coupling of the geometric terms into the
observable 𝐿, 𝑀 , but also how the partial wave |𝑙, 𝑚⟩ terms map to the observables, and hence the sensitivity of the
observables to given partial wave properties. Example results, making use of the linear-ramp ADMs of Sect. 6.3.8 are
illustrated in Fig. 6.11.

# Set data - set example ADMs to data structure & subset for calculation
data.setADMs(ADMs = inputADMs)
data.setSubset(dataKey = 'ADM', dataType = 'ADM')

# Using PEMtk - this only returns the product basis set as used for fitting
BetaNormX, basisProduct = data.afblmMatEfit(selDims={}, sqThres=False)

Subselected from dataset 'ADM', dataType 'ADM': 50 from 50 points (100.00%)

basisKey = 'polProd' # Key for BLM basis set

# Plot with subselection on pol state (by label, 'A'=z-pol case)
titleString=('"Polprod" basis term, $\Lambda_{R}\otimes E_{PR}(\hat{e})\otimes'

'\Delta_{L,M}(K,Q,S)\otimes A^{K}_{Q,S}(t)$.'
'\nSubselected for $z$-pol.')

*_, gFig = ep.lmPlot(basisProduct[basisKey].sel(Labels='A'),
xDim='t', cmap = cmap, mDimLabel='mu',
labelCols=labelCols,
titleString=titleString);

# Glue versions for JupyterBook output
glue("polProd-linearRamp-lmPlot", gFig.fig, display=False)

# Full channel functions
# Plot with subselection on pol state (by label, 'A'=z-pol case)
titleString='Channel functions example.\nSubselected for $z$-pol, $S-R\'=0$.'
*_, gFig = ep.lmPlot((basisProduct['BLMtableResort'] *

basisProduct['polProd']).sel(Labels='A').sel({'S-Rp':0}).
↪sel(L=2),

xDim='t', cmap=cmap, mDimLabel='m',
titleString=titleString);

(continues on next page)
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(continued from previous page)

# Glue versions for JupyterBook output
glue("channelFunc-linearRamp-lmPlot", gFig.fig, display=False)

Fig. 6.10: Example product basis function for the polarisation and ADM terms, as given by Λ𝑅 ⊗ 𝐸𝑃𝑅( ̂𝑒) ⊗
Δ𝐿,𝑀(𝐾, 𝑄, 𝑆) ⊗ 𝐴𝐾

𝑄,𝑆(𝑡). Shown for 𝑧-pol case only (𝑝 = 0).
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Fig. 6.11: Example of Ῡ𝑢,𝜁𝜁′

𝐿,𝑀 basis values for various choices of alignment (as per Fig. 6.7), shown for 𝐿 = 2 and 𝑧-pol
case only (𝑝 = 0). The basis essentially shows the obsevable terms if the ionization matrix elements are neglected, hence
the sensitivity of the configuration to each pair of partial wave terms. Note, in general, that the sensitivity to any given
pair ⟨𝑙′, 𝑚′|𝑙, 𝑚⟩, increases with alignment (hence with 𝑡 in this example) for the linear polarisation case (𝜇 = 𝜇′ = 0),
but typically decreases with alignment for cross-polarised terms.
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6.4 Density matrix representation

6.4.1 General introduction

For a general introduction, and discussion of density matrix techniques and applications in AMO physics, see Blum’s text-
book Density Matrix Theory and Applications [97], which is referred to extensively herein. The general density operator,
for a mixture of independent states |𝜓𝑛⟩, can be defined as per Eqn. 2.8 in Blum [97]:

̂𝜌 = ∑
𝑛

𝑊𝑛|𝜓𝑛⟩⟨𝜓𝑛|

Where 𝑊𝑛 defines the (statistical) weighting of each state 𝜓𝑛 in the mixture.
For a given basis set, |𝜙𝑚⟩, the states can be expanded and the matrix elements of 𝜌 defined as per Eqns. 2.9 - 2.11 in
Blum [97]:

|𝜓𝑛⟩ = ∑
𝑚′

𝑎(𝑛)
𝑚′ |𝜙𝑚′⟩

̂𝜌 = ∑
𝑛

∑
𝑚𝑚′

𝑊𝑛𝑎(𝑛)
𝑚′ 𝑎(𝑛)∗

𝑚 |𝜙𝑚′⟩⟨𝜙𝑚| (6.29)

And the matrix elements - the density matrix - given explicitly as:

𝜌𝑖,𝑗 = ⟨𝜙𝑖| ̂𝜌|𝜙𝑗⟩ = ∑
𝑛

𝑊𝑛𝑎(𝑛)
𝑖 𝑎(𝑛)∗

𝑗 (6.30)

For all pairs of basis states (𝑖, 𝑗). This defines the density matrix in the {|𝜙𝑛⟩} representation (basis space). Of particular
note here is that the mixed states are assumed to be incoherent (independent), whilst the basis expansion is coherent.

6.4.2 Continuum density matrices

In general, the discussion herein will focus on the photoelectron properties and generally assume a single final ion, and
associated free-electron state of interest, hence the final state (Eq. (6.1)) can be simplified to |Ψ𝑓⟩ ≡ |k⟩. This is equivalent
to a “pure state” in density matrix terminology, which can then expanded (coherently) in an appropriate representation
(basis). Following this, the density operator associated with the continuum state can be written as ̂𝜌 = |Ψ𝑓⟩⟨Ψ𝑓 | ≡ |k⟩⟨k|.
Making use of the tensor notation introduced in Sect. 6.3, the final continuum state can then be expanded as a density
matrix in the 𝜁𝜁′ representation (with the observable dimensions {𝐿, 𝑀} explicitly included in the density matrix), which
will also be dependent on the choice of channel functions (hence “experiment” 𝑢); the density matrix can then be given
as:

𝜌𝑢,𝜁𝜁′

𝐿,𝑀 = Υ
𝑢,𝜁𝜁′

𝐿,𝑀 𝕀𝜁,𝜁′ (6.31)

Here the density matrix can be interpreted as the final, LF/AF orMF density matrix (depending on the channel functions
used), incorporating both the intrinsic and extrinsic effects (i.e. all channel couplings and radial matrix elements for the
given measurement), with dimensions dependent on the unique sets of quantum numbers required - in the simplest case,
this will just be a set of partial waves 𝜁 = {𝑙, 𝑚}.
In the channel function basis, a radial, or reduced, form of the density matrix can also be constructed, and is given by the
coherent product of the radial matrix elements (as defined in Eq. (6.14)):

𝜌𝜁𝜁′ = 𝕀𝜁,𝜁′ (6.32)

This form encodes purely intrinsic (molecular scattering) photoionization dynamics (thus characterises the scattering
event), whilst the full form 𝜌𝑢,𝜁𝜁′

𝐿,𝑀 of Eq. (6.31) includes any additional effects incorporated via the channel functions.
For reconstruction problems, it is usually the reduced form of Eq. (6.32) that is of interest, since the remainder of the
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problem is already described analytically by the channel functions Υ𝑢,𝜁𝜁′

𝐿,𝑀 . In other words, the retrieval of the radial
matrix elements 𝕀𝜁,𝜁′ and the radial density matrix 𝜌𝜁𝜁′ are equivalent, and both can be viewed as completely describing
the photoionization dynamics.

The 𝐿, 𝑀 notation for the full density matrix 𝜌𝑢,𝜁𝜁′

𝐿,𝑀 (Eq. (6.31)) indicates here that these dimensions should not be
summed over, hence the tensor coupling into the 𝛽𝑢

𝐿,𝑀 parameters can also be written directly in terms of the density
matrix (cf. Eq. (6.13)):

𝛽𝑢
𝐿,𝑀 = ∑

𝜁,𝜁′
𝜌𝑢,𝜁𝜁′

𝐿,𝑀 (6.33)

In fact, this form arises naturally since the 𝛽𝑢
𝐿,𝑀 terms are the state multipoles (geometric tensors) defining the system,

which can be thought of as a coupled basis equivalent of the density matrix representations (see, e.g., Ref. [97], Chpt.
4.).
In a more traditional notation (following Eq. (6.1), see also Ref. [100]), the density operator can be expressed as:

𝜌(𝑡) = ∑
𝐿𝑀

∑
𝐾𝑄𝑆

𝐴𝐾
𝑄𝑆(𝑡) ∑

𝜁𝜁′
Υ

𝑢,𝜁𝜁′

𝐿,𝑀 |𝜁, Ψ+⟩⟨𝜁, Ψ+|𝜇𝑞𝜌𝑖𝜇∗
𝑞′|𝜁′, Ψ+⟩⟨𝜁′, Ψ+| (6.34)

This is, effectively, equivalent to an expansion in the various tensor operators defined in the channel function notation
above (Eq. (6.31)), but in a standard state-vector notation. Note, also, that this form explicitly defines the initial state of
the system as a density matrix 𝜌𝑖 = |Ψ𝑖⟩⟨Ψ𝑖|, and explicitly allows for time-dependence via the 𝐴𝐾

𝑄,𝑆(𝑡) term. Finally,
it is of note that these density matrices are implicitly energy dependent through the dependence on the final state energy
|k| but, in many cases (including the examples herein) are considered only at a single energy. This is usually due to
experimental considerations, which typically provide photoelectron observables at a single energy (or small range 𝛿𝑘 over
which the change in the continuum is considered negligible), hence there are no cross-terms in energy; however, in some
cases (e.g. certain types of multi-pulse experiment), interferences between different continuum energies may be access,
and density matrices including energy-dependence (e.g. in the 𝜁 = {𝑙, 𝑚, 𝑘} representation) may be of interest. (For
further discussion of the use of density matrices in other specific cases, see Quantum Metrology Vol. 1 [4], particularly
Chpts. 2 & 3, and refs. therein.)
The main benefit of a (continuum) density matrix representation in the current work is as a rapid way to visualize the
phase relations between the photoionization matrix elements (the off-diagonal density matrix elements), and the ability
to quickly check the overall pattern of the elements, hence confirm that no phase-relations are missing and orthogonality
relations are fulfilled - some numerical examples are given below. Since the method for computing the density matrices
is also numerically equivalent to a tensor outer-product, density matrices and visualizations can also be rapidly composed
for other properties of interest, e.g. the various channel functions defined herein, providing another complementary
methodology and tool for investigation. (Further examples can be found in the ePSproc documentation [35], as well as in
the literature, see, e.g., Ref. [97] for general discussion, Ref. [84] for application in pump-probe schemes.)
Furthermore, as noted above, the density matrix elements provide a complete description of the photoionization event,
and hence make clear the equivalence of the “complete” photoionization experiments (and associated continuum recon-
struction methods) discussed herein, with general quantum tomography schemes [101]. The density matrix can also be
used as the starting point for further analysis based on standard density matrix techniques - this is discussed, for instance,
in Ref. [97], and can also be viewed as a bridge between traditional methods in spectroscopy and AMO physics, and more
recent concepts in the quantum information sciences (see, e.g., Refs. [102, 103] for recent discussions in this context).
A brief numerical diversion in this direction is given in Sect. 6.4.6, which illustrates the use of the the QuTiP (Quantum
Toolkbox in Python) library [104, 105, 106] with the density matrix results derived herein.
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6.4.3 Numerical setup

This follows the setup in Sect. 6.3 Tensor formulation of photoionization, using a symmetry-based set of basis functions
for demonstration purposes. (Repeated code is hidden in PDF version.)

6.4.4 Compute a density matrix

A basic density matrix computation routine is implemented in the ePSproc codebase [33, 34, 35]. This makes use of input
tensor arrays, and computes the density matrix as an outer-product of the defined dimension(s). The numerics essentially
compute the outer product from the specified dimensions, which can be written generally as per Eqs. (6.29), (6.30), where
𝑎(𝑛)

𝑖 𝑎(𝑛)∗
𝑗 are the values along the specified dimensions/state vector/representation. These dimensions must be in input

arrays, but will be restacked as necessary to define the effective basis space, and all coherent pairs will be computed.
For instance, considering the ionization matrix elements demonstrated herein, setting indexes (quantum numbers) as
[l,m] will select the |𝜁⟩ = |𝑙, 𝑚⟩ basis, hence define the density operator as ̂𝜌 = |𝜁⟩⟨𝜁′| = |𝑙, 𝑚⟩⟨𝑙′, 𝑚′| and the
corresponding density matrix elements 𝜌𝜁,𝜁′ = ⟨𝜁| ̂𝜌|𝜁′⟩ = 𝑎𝑙,𝑚𝑎∗

𝑙′,𝑚′ . Similarly, setting ['l','m','mu'] will set
the |𝜁⟩ = |𝑙, 𝑚, 𝜇⟩ as the basis vector and so forth, where |𝜁⟩ is used as a generic state vector denoting all required quantum
numbers. Additionally, other quantum numbers/dimensions can be kept, summed or selected from the input tensors prior
to computation, thus density matrices can be readily computed as a function of other parameters, or averaged, according
to the properties of interest, experimental parameters and observables.
Note, however, that this selection is purely based on the numerics, which compute the outer product along the defined
dimensions |𝜁⟩⟨𝜁′| to form the density matrix, hence does not guarantee a well-formed density matrix in the strictest sense
(depending on the basis set), although will always present a basis state correlation matrix of sorts. A brief example, for
the D2h defined matrix element is given below; for more examples see the ePSproc documentation [35].

# See the docs for more,
# https://epsproc.readthedocs.io/en/dev/methods/density_mat_notes_demo_300821.html

# Import routines for density calculation and plotting
from epsproc.calc import density

#*** Compose density matrix

# Set dimensions/state vector/representation
# These must be in original data, but will be restacked as
# necessary to define the effective basis space.

# Set dimensions for density matrix. Note stacked dims are OK, in this case LM = {l,m}
denDims = 'LM'
selDims = None # Select on any other dimensions?
sumDims = None # Sum over any other dimensions?

# (Set sumDims=True to sum over all dims except denDims.)
pTypes=['r','i'] # Plotting types 'r'=real, 'i'=imaginary
thres = 1e-4 # Threshold for outputs (otherwise set to zero and/or dropped from␣

↪result)
normME = False # Normalise matrix elements before computing?
normDen = 'max' # Method to normalise density matrix

# Calculate - Ref case
k = sym
matE = data.data[k]['matE'].copy() # Set data from main class instance by key

# Normalise input matrix elements?
if normME:

(continues on next page)
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(continued from previous page)

matE = matE/matE.max()

#*** Compute density matrix for given parameters
# See demo at:
# https://epsproc.readthedocs.io/en/latest/methods/density_mat_notes_demo_300821.

↪html
# API docs:
# https://epsproc.readthedocs.io/en/latest/modules/epsproc.calc.density.html

↪#epsproc.calc.density.densityCalc
daOut, *_ = density.densityCalc(matE, denDims = denDims,

selDims = selDims, thres = thres)

# Renormlise output?
if normDen=='max':

daOut = daOut/daOut.max()
elif normDen=='trace':

# Need sym sum here to get 2D trace
daOut = daOut/(daOut.sum('Sym').pipe(np.trace)**2)

# Plot density matrix with Holoviews
# Note sum over 'Sym' dimension to flatten plot to (l,m) dims only.
daPlot = density.matPlot(daOut.sum('Sym'), pTypes=pTypes)

6.4.5 Visualising matrix element reconstruction fidelity with density matrices

To demonstrate the use of the density matrix representation as a means to test similarity or fidelity between two sets of
matrix elements, a trial set of matrix elements can be derived from the original set used above, plus random noise, and the
differences in the densitymatrices directly computed. An example is shown in Fig. 6.13; in this example up to 10% random
noise has been added to the original (input) matrix elements, and the resultant density matrix computed. The difference
matrix (Fig. 6.13(c)) then provides the fidelity between the original and noisy case. In testing retrieval methodologies,
this type of analysis thus provides a quick means to test reconstruction results vs. known inputs. Although this case is
only illustrated for real density matrices, a similar analysis can be used for the imaginary (or phase) components, thus
coherences can also be quickly visualised in this manner.

#*** Set trial matrix element for comparison with the original case computed above
matE = data.data[k]['matE'].copy()

if normME:
matE = matE/matE.max()

# Add random noise, +/- 10%
# Note this is applied to normalised matE
# For the normalised case this results in a standard deviation in the difference
# density matrix elements of ~sqrt(2*(0.1^2) + 2*0.1) = 0.2
# (Derived from basic error propagation, ignoring the actual values -
# see https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Example_formulae.)
noise = 0.1
SD = np.sqrt(4*(noise**2))
# Set range to random values +/-1 * noise
matE_noise = matE + matE*((np.random.rand(*list(matE.shape)) - 0.5) * 2*noise)

# Compute density matrix
daOut_noise, *_ = density.densityCalc(matE_noise, denDims = denDims, selDims =␣

↪selDims, thres = thres)
(continues on next page)
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Fig. 6.12: Example density matrix, computed from matrix elements defined purely by D2h symmetry. Note in this case
only the real part is non-zero. Axes labels give terms {𝐿, 𝑀} and {𝐿′, 𝑀 ′}.
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# Renormlise output?
if normDen=='max':

daOut_noise = daOut_noise/daOut_noise.max()
elif normDen=='trace':

daOut_noise = daOut_noise/(daOut_noise.sum('Sym').pipe(np.trace)**2)

daPlot_noise = density.matPlot(daOut_noise.sum('Sym'), pTypes=pTypes)

# Compute differences
daDiff = daOut.sum('Sym') - daOut_noise.sum('Sym')
daDiff.name = 'Difference'
daPlotDiff = density.matPlot(daDiff, pTypes=pTypes)

print(f'Noise = {noise}, SD (approx) = {SD}')
maxDiff = daDiff.max().values
print(f'Max difference = {maxDiff}')

#*** Layout plot from Holoviews objects for real parts, with custom titles.
daLayout = (daPlot.select(pType='Real').opts(title="(a) Original", xlabel='L,M',

ylabel="L',M'")
+ daPlot_noise.select(pType='Real').opts(title="(b) With noise",

xlabel='L,M', ylabel="L',M'")
+ daPlotDiff.select(pType='Real').opts(title="(c) Difference (fidelity)",

xlabel='L,M', ylabel="L',M'"))

6.4.6 Working with density matrices with QuTiP library functions

From the numerical density matrix, a range of other standard properties can be computed - of particular interest are likely
to be various standard quantities such as the trace, Von Neuman entropy and so forth. Naturally these can be computed
numerically directly from the relevant formal definitions; however, many of the fundamentals are already implemented in
other libraries, and numerical representations can be passed directly to such libraries. In particular, the QuTiP (Quantum
Toolkbox in Python) library [104, 105, 106] implements a range of standard functions, metrics, transforms and utility
functions for working with state vectors and density matrices. A brief numerical example is given below, see the QuTiP
documentation [106] for more possibilities.

Convert numerical arrays to QuTiP objects

# Import QuTip
from qutip import *

# Wrap density matrices to QuTip objects
# Note sum('Sym') to ensure 2D matrix, and .data to pass Numpy data array only
pa = Qobj(daOut.sum('Sym').data) # Reference continuum density matrix
pb = Qobj(daOut_noise.sum('Sym').data) # Noisy case

# QuTip objects have data as Numpy arrays, and render as typeset matrices in a␣
↪notebook

# DEBUG NOTE 22/04/23 - QuTip matrix latex output currently causing PDF build errors,␣
↪so set hide output for testing.

# See https://github.com/phockett/Quantum-Metrology-with-Photoelectrons-Vol3/issues/8
if buildEnv != 'pdf':

(continues on next page)
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Fig. 6.13: Example density matrices, computed from matrix elements defined purely by D2h symmetry. Here the panels
show (a) the original density matrix, (b) density matrix computed with +/- 10% random noise added to the original
matrix elements, (c) the difference matrix, which indicates the fidelity of the noisy case relative to the original case. For
normalised density matrices the 10% noise case translates to a standard deviation 𝜎 ≈0.2 on the differences; the maximum
error in the test case as illustrated =0.313.
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display(pa)
# print(pa)

Fidelity metric

Fidelity between two density matrices 𝜌𝑎, 𝜌𝑏 can be defined as per Refs. [107, 108]:
𝐹(𝜌𝑎, 𝜌𝑏) = Tr√√𝜌𝑎𝜌𝑏

√𝜌𝑎

This is implemented by the fidelity function in the QuTiP (Quantum Toolkbox in Python) library [104, 105, 106].
Of note in this test case is that the resultant is close to limiting-case value of 𝐹(𝜌𝑎, 𝜌𝑏) = 1 for the test case herein,
despite the added noise and some per-element disparities as shown in Fig. 6.13(c). This reflects the conceptual difference
between an element-wise evaluation of the differences, vs. a formal scalar metric.

# Test fidelity, =1 if trace-normalised
print(f"Fidelity (a,a) = {fidelity(pa,pa)}")
print(f"Trace = {pa.tr()}")
print(f"Trace-normed fidelity = {fidelity(pa,pa)/pa.tr()}")

Fidelity (a,a) = 25.00000031332397
Trace = 25.0
Trace-normed fidelity = 1.0000000125329587

# Test fidelity vs noisy case
print(f"Fidelity (a,b) = {fidelity(pa,pb)}")
print(f"Trace a = {pa.tr()}, Trace b = {pb.tr()}")
print(f"Trace-normed fidelity = {fidelity(pa/pa.tr(),pb/pb.tr())}")

Fidelity (a,b) = 22.756560550176633
Trace a = 25.0, Trace b = 20.784458732966613
Trace-normed fidelity = 0.9983218308270521

# This can also be computed rapidly with lower-level QuTip functionality...

# Compute inner term, note .sqrtm() for square root.
inner = pa.sqrtm() * pa * pa.sqrtm()

# Compute fidelity
inner.sqrtm().tr()

(25.00000059788841+8.879641550582872e-08j)
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6.5 Molecular alignment

6.5.1 A very brief introduction to molecular alignment

The term molecular alignment can be used, in general, to define any case where the MF is specified relative to the LF
in some way - for instance if the molecular symmetry axis is constrained to the LF 𝑧-axis. Herein, it is generally used
more specifically, to refer to the case of a (time-dependent) aligned molecular ensemble in gas-phase experiments (e.g. as
illustrated in Fig. 4.1). Any such axis distribution, in which there is a defined arrangement of axes created in the LF, can
be discussed, and characterised, in terms of the axis distribution moments (ADMs), which have already been introduced
passing in Sect. 6.3. More specifically, ADMs are coefficients in a multipole expansion, usually in terms ofWigner rotation
matrix elements, of the molecular axis probability distribution. In this section some additional definitions are given, along
with numerical examples.
The creation of an aligned ensemble in the gas phase can be achieved via a single, or sequence of, N-photon transitions, or
strong-field mediated techniques. Of the latter, adiabatic and non-adiabatic alignment methods are particularly powerful,
andmake use of a strong, slowly-varying or impulsive laser field respectively. (Here the “slow” and “impulsive” time-scales
are defined in relation to molecular rotations, roughly on the ps time-scale, with ns and fs laser fields corresponding to the
typical slow and fast control fields.) In the former case, the molecular axis, or axes, will gradually align along the electric-
field vector(s) while the field is present. In the latter, impulsive case, a broad rotational wavepacket (RWP) can be created,
initiating complex rotational dynamics including field-free revivals of ensemble alignment. For further general discussion,
there is a rich literature on molecular alignment available, see, for instance, Refs. [109, 110, 111, 112] for reviews and
further introductory materials, and further discussion in the current context can be found in Quantum Metrology Vols. 1
& 2 [4, 9] and Refs. [3, 95, 96, 113, 114, 115] and references therein.
For radial matrix elements retrieval problems based on RWP methods, the absolute degree of alignment may - or may not
- be critical in a given case. The sampling of a range of different alignments, however, is vital, since this directly feeds into
the information content of the measurements (see Sect. 6.3.8 and Sect. 6.7). In the case-studies of Part II, the ADMs are
assumed to be known, but in general these must be determined from experimental data, this is discussed in Sect. 7.1.1.

6.5.2 Alignment distribution moments (ADMs)

The parametrization of an aligned distribution can be given generally by an expansion inWigner rotation matrix elements:

𝑃(Ω, 𝑡) = ∑
𝐾,𝑄,𝑆

𝐴𝐾
𝑄,𝑆(𝑡)𝐷𝐾

𝑄,𝑆(Ω) (6.35)

Where 𝑃 (Ω, 𝑡) is the full axis distribution probability, expanded for a set of Euler anglesΩ, and the expansion parameters
𝐴𝐾

𝑄,𝑆(𝑡) are the ADMs.
This reduces to the 2D case if 𝑆 = 0, which can equivalently be described as an expansion in spherical harmonics (note
that the normalisation of the ADMs may be different in this case):

𝑃(𝜃, 𝜙, 𝑡) = ∑
𝐾,𝑄

𝐴𝐾
𝑄,0(𝑡)𝐷𝐾

𝑄,0(Ω) = ∑
𝐾,𝑄

𝐴𝐾
𝑄 (𝑡)𝑌𝐾,𝑄(Ω) (6.36)

In the examples given in Sect. 6.3, some arbitrary choices of 𝐴𝐾
𝑄,𝑆(𝑡) were demonstrated to investigate their effects

on the tensor basis sets; in the case-studies presented in Part II realistic ADMs are used for specific fitting problems.
In practice this equates to (accurately) simulating rotational wavepackets, hence obtaining the corresponding 𝐴𝐾

𝑄,𝑆(𝑡)
parameters (expectation values), as a function of laser fluence and rotational temperature. (Given experimental data, a
2D uncertainty (or error) surface in these two fundamental quantities can then be obtained from a linear regression for
each set of 𝐴𝐾

𝑄,𝑆(𝑡), see Ref. [3] for further introductory discussion on this point.) Note that, as discussed in Sect. 5.5,
computation of molecular alignment is not yet implemented in the Photoelectron Metrology Toolkit [5], so values must
be obtained from other codes. ADMs used herein were all computed with codes developed by V. Makhija [116], and are
available from the ePSproc [34] repo on Github.
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6.5.3 Numerical setup

For illustrative purposes, the ADMs used for the 𝑁2 fitting example are here loaded and used to compute 𝑃(Ω, 𝑡). (Note
these ADMs are for a 2-pulse alignment scheme, as outlined in Ref. [1].)

# Quick plot for subselected ADMs (setup in the script),
# using basic plotter
data.ADMplot(keys = data.subKey)

# Quick plot for subselected ADMs (setup in the script), using hvplot
# data.data['subset']['ADM'].unstack().squeeze().real.hvplot.line(x='t').overlay('K')

# As above, but plot K>0 terms only, and keep 'Q','S' indexes (here all =0)
figObj = data.data['subset']['ADM'].unstack().where(data.data['subset']['ADM'].

↪unstack().K>0) \
.real.hvplot.line(x='t').overlay(['K','Q','S']).opts(width=700)

# Glue plot for later
glue("fitSystem", fitSystem, display=False)
glue("ADMdemoPlot", figObj)

Fig. 6.14: Example ADMs for N2.
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6.5.4 Compute 𝑃(𝜃, Φ, 𝑡) distributions

For 1D and 2D cases, the full axis distributions can be expanded in spherical harmonics and plotted using Photoelectron
Metrology Toolkit [5] class methods. This is briefly illustrated below. Note that expansions in Wigner rotation matrix
elements are not currently supported by these routines.

# NOTE - need this in some builds if Matplotlib has call-back errors.
%matplotlib inline
# Plot P(theta,t) with summation over phi dimension
# Note the plotting function automatically expands the ADMs in spherical harmonics
dataKey = 'subset'
data.padPlot(keys = dataKey, dataType='ADM', Etype = 't', pStyle='grid', reducePhi=

↪'sum', returnFlag = True)

Using default sph betas.
Summing over dims: set()
Plotting from self.data[subset][ADM], facetDims=['t', None], pType=a with␣

↪backend=mpl.
Grid plot: ('subset', 'ADM'), dataType: ADM, plotType: a
Set plot to self.data['subset']['plots']['ADM']['grid']

# Plot full axis distributions at selected time-steps
# tPlot = [39.402, 40.791, 42.18] # Manual setting for baseline case, and at max and␣

↪min K=2 times. OCS
tPlot = [4.018, 4.254, 4.49] # N2

(continues on next page)
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(continued from previous page)

# Alternatively, plot at selected times by index slice
# Note that selDims below requires labels (not index inds)
# tPlot = data.data[dataKey]['ADM'].t[::5] # OCS
# tPlot = data.data[dataKey]['ADM'].t[0:7:3] # N2

# Plot
ep.plot.hvPlotters.setPlotters(width=1200, height=600) # Force plot dims for HTML␣

↪render (avoids subplot clipping issues)
data.padPlot(keys = dataKey, dataType='ADM', Etype = 't', pType='a',

returnFlag = True, selDims={'t':tPlot}, backend='pl')

# And GLUE for display later with caption
figObj = data.data[dataKey]['plots']['ADM']['polar'][0]
glue("axisDistDemo", figObj)

Fig. 6.15: Molecular axis distributions𝑃(𝜃, 𝜙) at selected times. In this demo case the alignment is “1D”, and cylindrically
symmetric.

6.6 Observables: photoelectron flux in the LF and MF

The observables of interest herein - the photoelectron flux as a function of energy, ejection angle, and time (see Fig. 4.1)
- can be written quite generally as expansions in radial and angular basis functions. Various types and definitions are
given in this section, including worked numerical examples. The final section, Sect. 6.6.4, illustrates typical data from a
time-resolved measurement, resulting in time and energy dependant observables - this is the type of data required for the
bootstrap retrieval protocol.

68 Chapter 6. Theory



Quantum Metrology with Photoelectrons Vol. 3 *Analysis methodologies*

6.6.1 Spherical harmonics

The photoelectron flux as a function of energy, ejection angle, and time, can be written generally as an expansion in
spherical harmonics:

̄𝐼(𝜖, 𝑡, 𝜃, 𝜙) =
2𝑛
∑
𝐿=0

𝐿
∑

𝑀=−𝐿
̄𝛽𝐿,𝑀(𝜖, 𝑡)𝑌𝐿,𝑀(𝜃, 𝜙) (6.37)

Here the flux in the laboratory frame (LF) or aligned frame (AF) is denoted ̄𝐼(𝜖, 𝑡, 𝜃, 𝜙), with the bar signifying ensemble
averaging, and the molecular frame flux by 𝐼(𝜖, 𝑡, 𝜃, 𝜙). Similarly, the expansion parameters ̄𝛽𝐿,𝑀(𝜖, 𝑡) include a bar
for the LF/AF case. These observables are generally termed photoelectron angular distributions (PADs), often with
a prefix denoting the reference frame, e.g. LFPADs, MFPADs, and the associated expansion parameters ̄𝛽𝐿,𝑀(𝜖, 𝑡)
are generically termed anisotropy paramters. The polar coordinate system (𝜃, 𝜙) is referenced to an experimentally-
defined axis in the LF/AF case (usually defined by the laser polarization), and the molecular symmetry axis in the MF,
as illustrated in Fig. 4.1. Some arbitrary examples are given in Fig. 6.16, which illustrates a range of distributions of
increasing complexity; corresponding basic code to set 𝛽𝐿,𝑀 parameters and visualise them is given below; the values
used are as tabulated in Fig. 6.17.
Numerically, there are some choices and conventions which apply to the spherical harmonics. As noted in Sect. 5.3:
“spherical harmonics are defined with the usual physics conventions: orthonormalised, and including the Condon-Shortley
phase. Numerically they are implemented directly or via SciPy’ssph_harm function (see the SciPy docs for details [59].”
For further details, including conversion routines, see the pySHtools [60, 61, 62, 63] documentation, and numerical
examples below.

# Plot some distributions from specified BLMs

# Set specific LM coeffs by list with setBLMs, items are [l,m,value(s)]
# Multiple values are automatically assigned to an index 't'
from epsproc.sphCalc import setBLMs

BLM = setBLMs([[0,0,1,1,1,1,1,1],
[1,0,0,0.5,0.8,1,0.5,0],[1,-1,0,0.5,0.8,1,0.5,0],[1,1,0,0.5,-0.5,1,0.5,

↪0],
[2,0,1,0.5,0,0,0.5,1],
[4,2,0,0,0,0.5,0.8,1],[4,-2,0,0,0,0,-0.8,1]])

# Output a quick tabulation of the values with Pandas
BLM.to_pandas()

# Glue for later use
glue("blm-tab", BLM.to_pandas())

# Note also that the Xarray contains metadata (attributes) on type and normalisation
# This uses the SHtools format specification.

# Display full Xarray, including metadata
BLM

# Show harmonics info only
BLM.attrs['harmonics']

{'dtype': 'Complex harmonics',
'kind': 'complex',
'normType': 'ortho',
'csPhase': True}
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# Plot some PADs from BLMs
# Set the backend to 'pl' for an interactive surface plot with Plotly

# Explict row,column layout setting for figure
rc = [2,3]

# Compute expansions from BLM parameters and return figure objext
dataPlot, figObj = ep.sphFromBLMPlot(BLM, facetDim='t', backend = plotBackend, rc=rc,␣

↪plotFlag=True);

Fig. 6.16: Examples of angular distributions (expansions in spherical harmonics 𝑌𝐿,𝑀 ), for a range of cases indexed by 𝑡.
Note that up-down asymmetry is associatedwith odd-𝑙 contributions (e.g. 𝑡 = 1, 2), breaking of cylindrical symmetry with
𝑚 ≠ 0 terms (all 𝑡 > 0), and asymmetries in the (x,y) plane (skew/directionality) with different ±𝑚 terms (magnitude
or phase, e.g. 𝑡 = 2, 3, 4). Higher-order 𝐿, 𝑀 terms have more nodes, and lead to more complex angular structures, as
shown in the lower row (𝑡 = 3, 4, 5).

In general, the spherical harmonic rank and order (𝐿, 𝑀) of Eq. (6.37) are constrained by experimental factors in the LF
or AF, and 𝑛 is effectively limited by the molecular alignment (which is correlated with the photon-order for gas phase
experiments, or conservation of angular momentum in the LF more generally [117]), but in the MF is defined by the
maximum continuum angular momentum 𝑛 = 𝑙𝑚𝑎𝑥 imparted by the scattering event [118] (note lower-case 𝑙 here refers
specifically to the continuum photoelectron wavefunction, see Eq. (6.5)).
For basic cases these limits may be low: for instance, a simple 1-photon photoionization event (𝑛 = 1) from an isotropic
ensemble (zero net ensemble angular momentum) defines 𝐿𝑚𝑎𝑥 = 2; for cylindrically symmetric cases (i.e. 𝐷∞ℎ
symmetry) 𝑀 = 0 only. ForMF cases, 𝑙𝑚𝑎𝑥 = 4 is often given as a reasonable rule-of-thumb for the continuum - hence
𝐿𝑚𝑎𝑥 = 8 - although in practice higher-𝑙 may be populated. Some realistic example cases are discussed later (Part II),
see also ref. [4] for more discussion and complex examples.
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t 0 1 2 3 4 5
l m
0 0 1.0 1.0 1.0 1.0 1.0 1.0
1 0 0.0 0.5 0.8 1.0 0.5 0.0

-1 0.0 0.5 0.8 1.0 0.5 0.0
1 0.0 0.5 -0.5 1.0 0.5 0.0

2 0 1.0 0.5 0.0 0.0 0.5 1.0
4 2 0.0 0.0 0.0 0.5 0.8 1.0

-2 0.0 0.0 0.0 0.0 -0.8 1.0

Fig. 6.17: Values used for the plots in Fig. 6.16.

In general, these observables may also be dependent on various other parameters; in Eq. (6.37) two such parameters,
(𝜖, 𝑡), are included, as the usual variables of interest. Usually 𝜖 denotes the photoelectron energy, and 𝑡 is used in the
case of time-dependent (usually pump-probe) measurements. As discussed in Sect. 6.1, the origin of such dependencies
may be complicated but, in general, the associated photoionization matrix elements are energy-dependent, and time-
dependence may also appear for a number of intrinsic or extrinsic (experimental) reasons, e.g. electronic or nuclear
dynamics, rotational (alignment) dynamics, electric field dynamics etc. In many cases only one particular aspect may be
of interest, so 𝑡 can be used as a generic label to index changes as per Fig. 6.16.

6.6.2 Symmetrized harmonics

Symmetrized (or generalised) harmonics, which essentially provide correctly symmetrized expansions of spherical har-
monics (𝑌𝐿𝑀 ) functions for a given irreducible representation, Γ, of the molecular point-group can be defined by linear
combinations of spherical harmonics [119, 120, 121]:

𝑋Γ𝜇∗
ℎ𝑙 (𝜃, 𝜙) = ∑

𝜆
𝑏Γ𝜇

ℎ𝑙𝜆𝑌𝑙,𝜆(𝜃, 𝜙) (6.37)

where:
• Γ is an irreducible representation;
• (𝑙, 𝜆) define the usual spherical harmonic indices (rank, order), but note the use of (𝑙, 𝜆) by convention, since these
harmonics are usually referenced to the MF;

• 𝑏Γ𝜇
ℎ𝑙𝜆 are symmetrization coefficients;

• index 𝜇 allows for indexing of degenerate components (note here the unfortunate convention that the label 𝜇 is also
used for photon projection terms in general, as per Sect. 6.3.2 - in ambiguous cases the symmetrization term will
instead be labelled herein as 𝜇𝑋, although in many cases may actually be redundant and safely dropped from the
symmetrization coefficients);

• ℎ indexes cases where multiple components are required with all other quantum numbers identical.
Analogously to Eq. (6.37), a general expansion of an observable in the symmetrized harmonic basis set can then be
defined as:

̄𝐼(𝜖, 𝑡, 𝜃, 𝜙) = ∑
Γ𝜇ℎ𝑙

̄𝛽Γ𝜇
ℎ𝑙 (𝜖, 𝑡)𝑋Γ𝜇∗

ℎ𝑙 (𝜃, 𝜙) (6.38)

Alternatively, by substitution into Eq. (6.37), and assigning 𝑙 = 𝐿 and 𝜆 = 𝑀 , a general symmetrized expansion may
also be defined as:

̄𝐼(𝜖, 𝑡, 𝜃, 𝜙) = ∑
Γ𝜇ℎ

2𝑛
∑
𝐿=0

𝐿
∑

𝑀=−𝐿
𝑏Γ𝜇

ℎ𝐿𝑀 ̄𝛽𝐿,𝑀(𝜖, 𝑡)𝑌𝐿,𝑀(𝜃, 𝜙) (6.39)
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However, in many cases the symmetrization coefficients are subsumed into the 𝛽𝐿,𝑀 terms (or underlying matrix ele-
ments); in this case a simplified symmetrized expansion can be defined as:

̄𝐼Γ(𝜖, 𝑡, 𝜃, 𝜙) =
2𝑛
∑
𝐿=0

𝐿
∑

𝑀=−𝐿
̄𝛽Γ
𝐿,𝑀(𝜖, 𝑡)𝑌𝐿,𝑀(𝜃, 𝜙) (6.39)

Where the expansion is defined for a given symmetry and irreducible representation with the shorthandΓ; in many systems
a single label may be sufficient here, since allowed (𝐿, 𝑀) terms will be defined uniquely by irreducible representation,
although multiple quantum numbers may be required for unique definition in the most general cases as per Eq. (6.37)
(e.g. for cases with degenerate components). Further details and usage in relation to channel functions are also discussed
in Sect. 6.3 (see, in particular, Eq. (6.13) for a similar general case), and in relation to fitting for specific cases in Part II.
The exact form of these coefficients will depend on the point-group of the system, see, e.g. Refs. [121, 122]. Numerical
routines for the generation of symmetrized harmonics are implemented in Photoelectron Metrology Toolkit [5]: point-
groups, character table generation and symmetrization (computing 𝑏Γ𝜇

ℎ𝑙𝜆 parameters) is handled by libmsym [64, 65];
additional handling also makes use of pySHtools [60, 61, 62, 63].
A brief numerical example is given below, and more details can be found in the PEMtk documentation [20]. In this
case, full tabulations of the parameters list all 𝑏Γ𝜇

ℎ𝐿𝑀 for each irreducible representation, and the corresponding PADs are
illustrated in Fig. 6.19.

Note: Full tabulations of the parameters available in HTML or notebook formats only.

# Import class
from pemtk.sym.symHarm import symHarm

# Compute hamronics for Td, lmax=4
sym = 'Td'
lmax=6

symObj = symHarm(sym,lmax)

# Character tables can be displayed - this will render directly in a notebook.
symObj.printCharacterTable()

E C2^1 S4^1 σd C3^1
Character dim
A1 1 1.0 1.0 1.0 1.0 1.0
A2 1 1.0 1.0 -1.0 -1.0 1.0
E 2 2.0 2.0 0.0 0.0 -1.0
T1 3 3.0 -1.0 1.0 -1.0 0.0
T2 3 3.0 -1.0 -1.0 1.0 0.0

Fig. 6.18: Example character table for Td symmetry generated with the Photoelectron Metrology Toolkit [5] wrapper for
libmsym [64, 65].
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# The full set of expansion parameters can be tabulated

# pd.set_option('display.max_rows', 100)

symObj.displayXlm() # Display values (note this defaults to REAL harmonics)
# symObj.displayXlm(YlmType='comp') # Display values for COMPLEX harmonic expansion.

# To plot using ePSproc/PEMtk class, these values can be converted to ePSproc BLM␣
↪data type...

# Run conversion - the default is to set the coeffs to the 'BLM' data type
symObj.toePSproc()

# Set to new key in data class
data.data['symHarm'] = {}

for dataType in ['BLM']: #['matE','BLM']:
# Select expansion in complex harmonics
data.data['symHarm'][dataType] = symObj.coeffs[dataType]['b (comp)']
data.data['symHarm'][dataType].attrs = symObj.coeffs[dataType].attrs

# Plot full harmonics expansions, plots by symmetry
# Note 'squeeze=True' to force drop of singleton dims may be required.
# data.padPlot(keys='symHarm',dataType='BLM', facetDims = ['Cont'], squeeze = True,␣

↪backend=plotBackend)

# As above, with some additional layout options
rc = [2,3] # Explict layout setting
data.padPlot(keys='symHarm',dataType='BLM', facetDims = ['Cont'], squeeze = True,␣

↪backend=plotBackend,
rc = rc, plotFlag=False, returnFlag=True)

figObj = data.data['symHarm']['plots']['BLM']['polar'][0]

# And GLUE for display later with caption
gluePlotly("symHarmPADs", figObj)

Real & complex forms

By convention, the complex form of the spherical harmonics are usually used for photoionization problems. However,
real harmonics are also in common use (and have already appeared in the numerical routines above). The relationships
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Fig. 6.19: Examples of angular distributions from expansions in symmetrized harmonics 𝑋Γ𝜇∗
ℎ𝑙 (𝜃, 𝜙), for all irreducible

representations in Td symmetry (𝑙𝑚𝑎𝑥 =6). (Note 𝐴2 only has components for 𝑙 ≥ 6.)
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can be defined as any of the following sets of equations (per the Wikipaedia definitions [123]):

𝑌ℓ𝑚 =

⎧{{
⎨{{⎩

𝑖√
2

(𝑌 𝑚
ℓ − (−1)𝑚 𝑌 −𝑚

ℓ ) if 𝑚0
𝑌 0

ℓ if 𝑚 = 0
1√
2

(𝑌 −𝑚
ℓ + (−1)𝑚 𝑌 𝑚

ℓ ) if 𝑚 > 0.

=

⎧{{
⎨{{⎩

𝑖√
2

(𝑌 −|𝑚|
ℓ − (−1)𝑚 𝑌 |𝑚|

ℓ ) if 𝑚0
𝑌 0

ℓ if 𝑚 = 0
1√
2

(𝑌 −|𝑚|
ℓ + (−1)𝑚 𝑌 |𝑚|

ℓ ) if 𝑚 > 0.

=
⎧{
⎨{⎩

√
2 (−1)𝑚 ℑ[𝑌 |𝑚|

ℓ ] if 𝑚0
𝑌 0

ℓ if 𝑚 = 0√
2 (−1)𝑚 ℜ[𝑌 𝑚

ℓ ] if 𝑚 > 0.

(6.39)

Where the notation here uses 𝑌ℓ𝑚 for real harmonics, and 𝑌 𝑚
ℓ for complex.

Conversion between types is handled in the ePSproc codebase [33, 34, 35] either directly or via the pySHtools [60,
61, 62, 63] library, and objects usually have the type specified in their metadata (if missing, they are assumed to be
complex). The symmetry routines outlined above automatically compute both types, and these are available in the output
data structure (see the PEMtk documentation [20] for further details and examples, and the “Working with real spherical
harmonics” note from the ePSproc documentation [35], and the relevant pySHtools documentation pages).

# Display complex values
symObj.displayXlm(YlmType='comp') # Display values for COMPLEX harmonic expansion.

# Access complex values from SH tools objects
# SHtools object are stored in nested dicts by character and type
print(symObj.coeffs['SH']['A1'].keys())
print(symObj.coeffs['SH']['A1']['comp'])

dict_keys(['real', 'comp'])
kind = 'complex'
normalization = '4pi'
csphase = -1
lmax = 6
error_kind = None
header = None
header2 = None
name = None
units = None

# Similarly Xarray forms include both types
symObj.coeffs['XR']

6.6. Observables: photoelectron flux in the LF and MF 75

https://en.wikipedia.org/wiki/Spherical_harmonics#Real_form
https://epsproc.readthedocs.io
https://shtools.oca.eu
https://pemtk.readthedocs.io
https://epsproc.readthedocs.io/en/dev/special_topics/ePSproc_docs_working_with_real_harmonics_220922.html
https://epsproc.readthedocs.io/en/dev/special_topics/ePSproc_docs_working_with_real_harmonics_220922.html
https://epsproc.readthedocs.io
https://shtools.github.io/SHTOOLS/real-spherical-harmonics.html


Quantum Metrology with Photoelectrons Vol. 3 *Analysis methodologies*

6.6.3 Legendre polynomials

Finally, it is of note that Legendre polynomial expansions are also in common use in the description of photoionization
obsevables. These are suitable for cylindrically symmetric cases only, and form a subset of the general spherical harmonic
case. Using the same notation as Eq. (6.37), the 1D expansion can be given as:

̄𝐼(𝜖, 𝑡, 𝜃) =
2𝑛
∑
𝐿=0

̄𝛽𝐿(𝜖, 𝑡)𝑃𝐿(cos(𝜃)) (6.40)

Where 𝑃𝐿(cos(𝜃)) are Legendre polynomials in cos(𝜃) (equivalently, associated Legendre polynomials 𝑃 𝑀=0
𝐿 (cos(𝜃))).

Note that, since the normalisation is different, care must be taken when comparing associated anisotropy parameters
between Legendre polynomial and spherical harmonic expansions. Specifically:

𝛽𝑆𝑝ℎ
𝐿,0 = √(2𝐿 + 1)/4𝜋𝛽𝐿𝑔

𝐿 (6.41)

Where 𝑆𝑝ℎ and 𝐿𝑔 labels have been added to make explicit that the expansion parameters in the spherical harmonic and
Legndre polynomial basis sets respectively.
Herein only spherical harmonic expansions are used, but the ePSproc codebase [33, 34, 35] does include a conversion
routine to convert expansion parameters as required. Again more information can be found in the ePSproc documentation
[35], particularly the “Working with spherical harmonics” notebook.

# Set example BLMs and convert to Lg basis
# Note 'renorm=True' setting to renorm by B0 (will affect abs value of B0, but not␣

↪form of distribution)
# Note also 'harmonics' and 'normType' specifications in output data.

BLMsph = setBLMs([[0,0,1],[1,0,0.5],[2,0,0.8]]).squeeze(drop=True)
BLMlg = ep.util.conversion.conv_BL_BLM(BLMsph, to = 'lg', renorm = True)
BLMlg

6.6.4 Time-resolved data

In general, the datasets from a time-resolved measurement can be expressed as some form of anisotropy paramters, as
outlined above. In a similar manner to the ADMs detailed in Sect. 6.5, the 𝛽𝐿,𝑀(𝑡) can be plotted directly, or expanded
as distributions 𝐼(𝜖, 𝑡, 𝜃, 𝜙...). A brief demonstration is given below, making use of the 𝑁2 dataset explored in the case
study in Chpt. 11, for further details of the computational and plotting tools see Part II, and the ePSproc documentation
[35] and PEMtk documentation [20].

# Configure settings for case study
# %run '../scripts/setup_notebook.py'

# Fitting setup including data generation and parameter creation
# NOTE this assumes relevant data is available in ../part2/n2fitting.
# See Part 2 for more details and data sources
fitSystem = 'N2'
dataName = 'n2fitting'

# Set datapath,
dataPath = Path(Path.cwd().parent,'part2',dataName)

# Run general config script with dataPath set above
%run "../scripts/setup_fit_case-studies_270723.py" -d {dataPath} -c {fitSystem}
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# Compute AFBLMs for all matrix elements (energies) for selected orbital
# (Note the main fitting script only computes for a single E-point.)
# Use ADMs from fitting subset
orbKey = 'orb5'
data.AFBLM(keys = orbKey, AKQS = data.data['subset']['ADM'],

selDims = {'Type':'L'}, thres=1e-2)

Calculating AF-BLMs for job key: orb5

In this case, making use of ab initio radial matrix elements, a full set of 𝛽𝐿,𝑀(𝜖, 𝑡) are computed, for the ionizing channel(s)
defined (in this case as labelled by the orbKey parameter). These can be plotted vs. energy or time as line-plots or
colourmaps. The Photoelectron Metrology Toolkit [5] currently has some basic routines for some specific cases, or low-
level functionality from the base libraries can be used for more control.

# Default plot with Holoviews/Bokeh
# Will plot BLM(E,t) data with selectors & sliders for other dimensions
data.BLMplot(keys=orbKey, backend='hv')

BLMplot set data and plots to self.plots['BLMplot']

:HoloMap [Orb,t]
:NdOverlay [l,m]

:Curve [Eke] (BLM)

True

# For a full BLM(E,t) surface, the output Holoviews dataset can be used.
# See the Holoviews (https://holoviews.org) and HVplot (https://hvplot.holoviz.org)␣

↪docs for more details

# Set opts to match sizes - should be able to link plots or set gridspace to handle␣
↪this?

ep.plot.hvPlotters.setPlotDefaults(fSize = [750,300], imgSize = 600)

# Plot heatmap for l=2 vs. Eke and add ADM plot to layout with hvplot
daLayout = (data.plots['BLMplot']['hvDS'].select(l=[2]).to(hv.HeatMap, kdims=['t','Eke

↪']).opts(cmap='coolwarm') +
data.data['subset']['ADM'].unstack().sel({'K':[2,4]}).squeeze().real.hvplot.

↪line(x='t').overlay('K')).cols(1)

# Similarly, AFPADs can be plotted.
# Plot I(theta,t) for a single E
# %matplotlib inline
dataKey = 'subset' # Use subset data set for fitting
data.padPlot(keys = dataKey, dataType='AFBLM', selDims={'Labels':'A'},

Etype = 't', pStyle='grid', reducePhi='sum',
returnFlag = True)

Using default sph betas.
Summing over dims: set()
Plotting from self.data[subset][AFBLM], facetDims=['t', None], pType=a with␣

↪backend=mpl.
(continues on next page)
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Fig. 6.20: Example 𝐼(𝜖, 𝑡) data, computed for 𝑁2 (upper panel), and the ADMs used in the calculation (lower panel).
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(continued from previous page)

Grid plot: 3sg-1, dataType: AFBLM, plotType: a
Set plot to self.data['subset']['plots']['AFBLM']['grid']

# Plot I(theta,phi) at selected (E,t)
data.padPlot(keys = dataKey, dataType='AFBLM', selDims={'Labels':'A'},

Erange=[4,5,5], Etype = 't', returnFlag = True, backend='pl')

# And GLUE for display later with caption
figObj = data.data[dataKey]['plots']['AFBLM']['polar'][0]
glue("N2AFPADsdemo", figObj)

6.7 Information content & sensitivity

A useful tool in considering the possibility of matrix element retrieval is the response, or sensitivity, of the experimental
observables to the matrix elements of interest. Aspects of this have already been explored in Sect. 6.3, where consideration
of the various geometric tensors (or geometric basis set) provided a route to investigating the coupling - hence sensitivity
- of various parameters into product terms. In particular the tensor products discussed in Sect. 6.3.9, including the
full channel (response) functions Υ𝑢,𝜁𝜁′

𝐿,𝑀 ((6.18) and (6.19)), can be used to examine the overall sensitivity of a given
measurement to the underlying observables. By careful consideration of the problem at hand, experiments may then be
tailored for particular cases based on these sensitivities. A related question, is how a given experimental sensitivity might
be more readily quantified, and interpreted, for reconstruction problems, in a simpler manner. In general, this can be
termed as the information content of the measurement(s); an important aspect of such a metric is that it should be readily
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Fig. 6.21: AF-PADs (𝐼(𝜃, 𝜙; 𝜖, 𝑡)) example for 𝑁2 at selected (𝜖, 𝑡). In this demo case the alignment and PADs are “1D”,
and cylindrically symmetric.

80 Chapter 6. Theory



Quantum Metrology with Photoelectrons Vol. 3 *Analysis methodologies*

interpretable and, ideally, related to whether a reconstruction will be possible in a given case (this has, for example, been
considered by other authors for specific cases, e.g. Refs. [113, 124]).
Work in this direction is ongoing, and some thoughts are given below. In particular, the use of the observable 𝛽𝐿,𝑀
presents an experimental route to (roughly) define a form of information content, whilst metrics derived from channel
functions or density matrices may present a more rigorous theoretical route to a useful parameterization of information
content.

6.7.1 Numerical setup

This follows the setup in Sect. 6.3 Tensor formulation of photoionization, using a symmetry-based set of basis functions
for demonstration purposes. (Repeated code is hidden in PDF version.)

6.7.2 Experimental information content

As discussed in QuantumMetrologyVol. 2 [9], the information content of a single observable might be regarded as simply
the number of contributing 𝛽𝐿,𝑀 parameters. In set notation:

𝑀 = n{𝛽𝐿,𝑀} (6.42)

where 𝑀 is the information content of the measurement, defined as n{...} the cardinality (number of elements) of the
set of contributing parameters. A set of measurements, made for some experimental variable 𝑢, will then have a total
information content:

𝑀𝑢 = ∑
𝑢
n{𝛽𝑢

𝐿,𝑀}

In the case where a single measurement contains multiple 𝛽𝐿,𝑀 , e.g. as a function of energy 𝜖 or time 𝑡, the information
content will naturally be larger:

𝑀𝑢,𝜖,𝑡 = ∑
𝑢,𝜖,𝑡

n{𝛽𝑢
𝐿,𝑀(𝜖, 𝑡)}

= 𝑀𝑢 × 𝑀𝜖,𝑡

where the second line pertains if each measurement has the same native information content, independent of 𝑢. It may be
that the variable 𝜖 is continuous (e.g. photoelectron energy), but in practice it will usually be discretized in some fashion
by the measurement.
In terms of purely experimental methodologies, a larger 𝑀𝑢 clearly defines a richer experimental measurement which
explores more of the total measurement space spanned by the full set of {𝛽𝑢

𝐿,𝑀(𝜖, 𝑡)}. However, in this basic definition
a larger 𝑀𝑢 does not necessarily indicate a higher information content for quantum retrieval applications. The reason for
this is simply down to the complexity of the problem (cf. Eq. (6.13)), in which many couplings define the sensitivity of
the observable to the underlying system properties of interest. In this sense, more measurements, and larger 𝑀 , may only
add redundancy, rather than new information.
From a set of numerical results, it is relatively trivial to investigate some of these properties as a function of various
constraints, using standard Python functionality, as shown in the code blocks below. For example, 𝑀 can be determined
numerically as the number of elements in the dataset, the number of unique elements, the number of elements within a
certain range or above a threshold, and so on.

# For the basic case, the data (Xarray object) can be queried,
# and relevant dimensions investigated

print(f"Available dimensions: {BetaNorm.dims}")

# Show BLM dimension details from Xarray dataset
display(BetaNorm.BLM)
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Available dimensions: ('Labels', 't', 'Type', 'it', 'Eke', 'h', 'muX', 'BLM')

<xarray.DataArray 'BLM' (BLM: 9)>
array([(0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1), (2, -1), (2, 0),

(2, 1)], dtype=object)
Coordinates:
* BLM (BLM) MultiIndex
- l (BLM) int64 0 0 0 1 1 1 2 2 2
- m (BLM) int64 -1 0 1 -1 0 1 -1 0 1

# Note, however, that the indexes may not always be physical,
# depending on how the data has been composed and cleaned up.
# For example, the above has l=0, m=+/-1 cases, which are non-physical.

# Clean array to remove terms |m|>l, and display
cleanBLMs(BetaNorm).BLM

<xarray.DataArray 'BLM' (BLM: 7)>
array([(0, 0), (1, -1), (1, 0), (1, 1), (2, -1), (2, 0), (2, 1)], dtype=object)
Coordinates:
* BLM (BLM) MultiIndex
- l (BLM) int64 0 1 1 1 2 2 2
- m (BLM) int64 0 -1 0 1 -1 0 1

# Thresholding can also be used to reduce the results
ep.matEleSelector(BetaNorm, thres=1e-4).BLM

<xarray.DataArray 'BLM' (BLM: 2)>
array([(0, 0), (2, 0)], dtype=object)
Coordinates:
* BLM (BLM) MultiIndex
- l (BLM) int64 0 2
- m (BLM) int64 0 0

# The index can be returned as a Pandas object, and statistical routines applied...
# For example, nunique() will provide the number of unique values.

thres=1e-4

print(f"Original array M={BetaNorm.BLM.indexes['BLM'].nunique()}")
print(f"Cleaned array M={cleanBLMs(BetaNorm).BLM.size}")
print(f"Thresholded array (thres={thres}), \

M={ep.matEleSelector(BetaNorm, thres=thres).BLM.indexes['BLM'].nunique()}")

Original array M=9
Cleaned array M=7
Thresholded array (thres=0.0001), M=2

Formore complicated cases, with 𝑢 > 1, e.g. time-dependentmeasurements, interrogating the statistics of the observables
may also be an interesting avenue to explore. The examples below investigate this for the example “linear ramp” ADMs
case. Here the statistical analysis is, potentially, a measure of the useful/non-redundant information content, for instance
the range or variance in a particular observable can be analysed, as can the number of unique values and so forth.
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# Convert to PD and tabulate with epsproc functionality
# Note restack along 't' dimension
BetaNormLinearADMsPD, _ = ep.util.multiDimXrToPD(BetaNormLinearADMs.squeeze().real,

thres=1e-4, colDims='t')

# Basic describe with Pandas,
# see https://pandas.pydata.org/docs/user_guide/basics.html#summarizing-data-describe
# This will give properties per t
BetaNormLinearADMsPD.describe()

t 0 1 2 3 4 5 6 7 8 9
count 5.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000
mean -0.169 -0.074 -0.063 -0.052 -0.041 -0.031 -0.020 -0.009 0.002 0.012
std 0.158 0.126 0.115 0.104 0.093 0.083 0.073 0.065 0.058 0.053
min -0.282 -0.254 -0.226 -0.198 -0.170 -0.142 -0.114 -0.086 -0.058 -0.038
25% -0.282 -0.201 -0.179 -0.157 -0.135 -0.113 -0.092 -0.072 -0.052 -0.030
50% -0.282 -0.002 -0.004 -0.006 -0.008 -0.010 -0.011 -0.009 -0.007 -0.005
75% -0.045 0.004 0.008 0.011 0.015 0.019 0.023 0.027 0.031 0.034
max 0.045 0.050 0.054 0.059 0.064 0.069 0.075 0.088 0.100 0.113

# Basic describe with Pandas,
# see https://pandas.pydata.org/docs/user_guide/basics.html#summarizing-data-describe
# By transposing the input array, this will give properties per BLM
BetaNormLinearADMsPD.T.describe()

h 0 1 2
l 0 2 0 2 4 6 0 2 4 6
m 0 0 0 0 0 0 0 0 0 0
count 10.000 9.000 10.000 10.000 9.000 9.000 10.000 10.000 9.000 9.000e+00
mean -0.156 0.063 -0.156 0.066 0.021 0.012 -0.156 -0.029 -0.021 1.669e-03
std 0.085 0.034 0.085 0.014 0.012 0.007 0.085 0.011 0.011 9.140e-04
min -0.282 0.013 -0.282 0.045 0.004 0.002 -0.282 -0.045 -0.038 3.337e-04
25% -0.219 0.038 -0.219 0.056 0.013 0.007 -0.219 -0.037 -0.029 1.001e-03
50% -0.156 0.063 -0.156 0.066 0.021 0.012 -0.156 -0.029 -0.021 1.669e-03
75% -0.093 0.088 -0.093 0.077 0.030 0.017 -0.093 -0.021 -0.013 2.336e-03
max -0.030 0.113 -0.030 0.088 0.038 0.022 -0.030 -0.013 -0.004 3.004e-03

For further insight and control, specific aggregation functions and criteria can be specified. For instance, it may be
interesting to look at the number of unique values to a certain precision (e.g. depending on experimental uncertainties),
or consider deviation of values from the mean.

# Round values to 2 d.p., then apply statistical methods
ndp = 2
BetaNormLinearADMsPD.round(ndp).agg(['min','max','var','count','nunique']).round(3)

6.7. Information content & sensitivity 83



Quantum Metrology with Photoelectrons Vol. 3 *Analysis methodologies*

t 0 1 2 3 4 5 6 7 8 9
min -0.280 -0.250 -0.230 -0.200 -0.170 -0.140 -0.110 -0.090 -0.060 -0.040
max 0.040 0.050 0.050 0.060 0.060 0.070 0.080 0.090 0.100 0.110
var 0.024 0.015 0.014 0.011 0.009 0.007 0.005 0.004 0.003 0.003
count 5.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000
nunique 3.000 5.000 7.000 7.000 8.000 8.000 8.000 8.000 8.000 8.000

# Define demean function and apply (from https://stackoverflow.com/a/26110278)
demean = lambda x: x - x.mean()

# Compute differences from mean
BetaNormLinearADMsPD.transform(demean,axis='columns')

t 0 1 2 3 4 5 6 7 8 9
h l m
0 0 0 -0.126 -0.098 -0.070 -4.205e-02 -1.402e-02 1.402e-02 4.205e-02 7.009e-02 0.098 0.126

2 0 NaN -0.050 -0.038 -2.508e-02 -1.254e-02 0.000e+00 1.254e-02 2.508e-02 0.038 0.050
1 0 0 -0.126 -0.098 -0.070 -4.205e-02 -1.402e-02 1.402e-02 4.205e-02 7.009e-02 0.098 0.126

2 0 -0.022 -0.017 -0.012 -7.172e-03 -2.391e-03 2.391e-03 7.172e-03 1.195e-02 0.017 0.022
4 0 NaN -0.017 -0.013 -8.537e-03 -4.269e-03 3.469e-18 4.269e-03 8.537e-03 0.013 0.017
6 0 NaN -0.010 -0.007 -4.912e-03 -2.456e-03 -3.469e-18 2.456e-03 4.912e-03 0.007 0.010

2 0 0 -0.126 -0.098 -0.070 -4.205e-02 -1.402e-02 1.402e-02 4.205e-02 7.009e-02 0.098 0.126
2 0 -0.016 -0.013 -0.009 -5.366e-03 -1.789e-03 1.789e-03 5.366e-03 8.943e-03 0.013 0.016
4 0 NaN 0.017 0.013 8.364e-03 4.182e-03 0.000e+00 -4.182e-03 -8.364e-03 -0.013 -0.017
6 0 NaN -0.001 -0.001 -6.675e-04 -3.337e-04 -1.735e-18 3.337e-04 6.675e-04 0.001 0.001

# Apply statistical functions to differences from mean.
BetaNormLinearADMsPD.transform(demean,axis='columns'). \

round(ndp).agg(['min','max','var','count','nunique']).round(3)

t 0 1 2 3 4 5 6 7 8 9
min -0.130 -0.100 -0.070 -0.04 -0.01 -0.00 0.00 -0.010 -0.010 -0.020
max -0.020 0.020 0.010 0.01 -0.00 0.01 0.04 0.070 0.100 0.130
var 0.004 0.002 0.001 0.00 0.00 0.00 0.00 0.001 0.002 0.003
count 5.000 10.000 10.000 10.00 10.00 10.00 10.00 10.000 10.000 10.000
nunique 2.000 6.000 5.000 5.00 2.00 2.00 3.00 5.000 6.000 6.000

In this case the analysis suggests that 𝑡 = 3 − 6 contain minimal information (low variance), and 𝑡 = 4, 5 potentially
redundant information (low nunique), whilst 𝑡 = 1, 7 − 9 show a greater total information content and number of unique
values. However, this analysis is not necessarily absolutely definitive, since some nuancesmay be lost in this basic statistical
analysis, particularly for weaker channels.
For a more detailed analysis, other standard analysis tools can be deployed. For instance, the covariance matrix can be
investigated, given by 𝐾𝑖,𝑗 = cov[𝑋𝑖, 𝑋𝑗] = ⟨(𝑋𝑖 − ⟨𝑋𝑖⟩)(𝑋𝑗 − ⟨𝑋𝑗⟩)⟩. For the linear ramp case this analysis is shown
below and, although not particularly useful in this example, will become more informative for more complicated cases.
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# Compute covariance matrix with Pandas
# Note this is the pairwise covariance of the columns,
# see https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.cov.

↪html
covMat = BetaNormLinearADMsPD.cov()

# Plot with holoviews
figObj = covMat.hvplot.heatmap(cmap='viridis')

Fig. 6.22: Example 𝛽𝐿,𝑀(𝑡) covariance matrix, see text for details.
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6.7.3 Information content from channel functions

A more complete accounting of information content would, therefore, also include the channel couplings, i.e. sensi-
tivity/dependence of the observable to a given system property, in some manner. For the case of a time-dependent
measurement, arising from a rotational wavepacket, this can be written as:

𝑀𝑢 = n{Υ𝑢
𝐿,𝑀(𝜖, 𝑡)}

In this case, each (𝜖, 𝑡) is treated as an independent measurement with unique information content, although there may
be redundancy as a function of 𝑡 depending on the nature of the rotational wavepacket and channel functions.
(Note this is in distinction to previously demonstrated cases where the time-dependence was created from a shaped laser-
field, and was integrated over in the measurements, which provided a coherently-multiplexed case, see refs. [99, 125,
126] for details.)

In the numerical examples below, this is considered in terms of the full channel (response) functions Υ𝑢,𝜁𝜁′

𝐿,𝑀 as defined in
(6.18) and (6.19) (see Sect. 6.3.9). Numerically, the routines follow from those already introduced above for exploring
the information content of 𝛽𝐿,𝑀 terms, with the caveat that there are more dimensions to handle in the channel functions,
indexed by the relevant set of quantum numbers {𝜁, 𝜁′} - these can be included in the criteria for determination of 𝑀 , or
selected or summed over as desired.

# Define a set of channel functions to test
channelFuncs = (basisProductLinearADMs['BLMtableResort'] * basisProductLinearADMs[

↪'polProd'])

# For illustrative purposes, define a subset to use for analysis
channelFuncsSubset = channelFuncs.sel(Labels='A').sel({'S-Rp':0,'mu':0,'mup':0}) #.

↪sel(L=2)

# Check dimensions
print(f"Available dimensions: {channelFuncs.dims}")
print(f"Subset dimensions: {channelFuncsSubset.dims}")

Available dimensions: ('m', 'mp', 'S-Rp', 'l', 'lp', 'L', 'mu', 'mup', 'Labels', 'M
↪', 't')

Subset dimensions: ('m', 'mp', 'l', 'lp', 'L', 'M', 't')

Note: Full tabulations of the parameters available in HTML or notebook formats only.

# Convert to PD and tabulate with epsproc functionality
# Note restack along 't' dimension
channelFuncsSubsetPD, _ = ep.util.multiDimXrToPD(channelFuncsSubset.squeeze().real,

thres=1e-4, colDims='t')

# Round values to 1 d.p., then apply statistical methods
# Compute per basis index and display
channelFuncsSubsetPD.T.round(2).agg(['min','max','var','count','nunique']).T

For the higher-dimensional case, it is useful to plot terms relative to all quantum numbers. For example, in a similar
manner to the basis set explorations of Sect. 6.3.9, related properties such as the distance from the mean can be examined
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with lmPlot(). And, as previously demonstrated, other properties, such as the covariance, may be examined and
plotted.

# channelFuncsSubsetPD.transform(demean,axis='columns')
# cmap=None # cmap = None for default. 'vlag' good?
# cmap = 'vlag'

# De-meaned channel functions
channelFuncsDemean = channelFuncsSubsetPD.transform(demean,axis='columns')

# Plot using lmPlot routine - note this requires conversion to Xarray data type first.
daPlot, daPlotpd, legendList, gFig = ep.lmPlot(channelFuncsDemean.to_xarray().to_

↪array('t')
, xDim='t', cmap=cmap, mDimLabel='m');

Set dataType (No dataType)
Plotting data (No filename), pType=a, thres=0.01, with Seaborn

No artists with labels found to put in legend. Note that artists whose label␣
↪start with an underscore are ignored when legend() is called with no argument.
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# Full covariance mapping along all dims
%matplotlib inline
sns.clustermap(channelFuncsSubsetPD.T.cov().fillna(0)) #.round(3))

<seaborn.matrix.ClusterGrid at 0x7fb99a1d4400>
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CHAPTER

SEVEN

NUMERICAL METHODOLOGIES FOR EXTRACTING MATRIX
ELEMENTS

Following the tensor notation outline in Sect. 6.3, the complete quantum metrology of a photoionization event (a.k.a. a
“complete” photoionization experiment) can be characterized as recovery of the matrix elements 𝐼𝜁(𝜖) (per Eqs. (6.13),
(6.14)) from the experimental measurements or, equivalently, the density matrix 2/7𝜁𝜁′ (Eqs. (6.31) - (6.33)). In general,
such a recovery or reconstruction may be possible provided the channel functions are known, and the information content
of the measurements is sufficient; it is, however, also possible that restrictions in any given case may preclude recon-
struction, or restrict the level of recovery possible (e.g. to a lower symmetry group, or certain subsets of radial matrix
elements) or fidelity of such a reconstruction. (For further discussion and background, see Refs. [92, 94] and Quantum
Metrology Vol. 1 [4].)
Of particular import for radial matrix elements retrieval is the phase-sensitive nature of the observables (Sect. 6.6), which
is required in order to obtain phase information on the partial-waves. In this context, PADs can also be considered as
angular interferograms, and reconstruction can be considered conceptually similar to other phase-retrieval problems, e.g.
optical field recovery with techniques such as FROG [127], and general quantum tomography [101].
As introduced previously (Sect. 4.1.2), the focus herein is the development and testing of the generalised bootstrap retrieval
protocol, based on time-resolved RWP photoionization experiments. A general outline of the simplest 2-stage version of
this protocol is shown in Fig. 7.1. In this scheme, the channel functions are assumed to be known, and the ADMs assumed
to be accurately computable: these are, in general, required to determine the radial matrix elements in this protocol.
An extended outline comparing some similar approaches is shown in Fig. 7.2; of particular note here is the possibility
for retrieval directly from MF measurements. Alternative, but conceptually similar, protocols involving different control
parameters (as distinct from the RWP and MF cases), may also be also be used, see Quantum Metrology Vols. 1 & 2 [4,
9] for examples. For protocols making use of control methods, the key requirement is for the contribution of the control
parameters to the observable, and associated coupling to the channel functions, to be accurately accounted for. In general,
these contributions may be computed and/or obtained from experiment depending on the scheme used. One advantage
of the RWP case is that the RWP can be accurately computed, and the determination of the corresponding molecular
alignment (ADMs) from an experiment can be treated as a reduced-dimensionality linear signal retrieval problem. As
indicated in Fig. 7.1, this stage is separable, and forms level 1 of the bootstrap retrieval protocol. In this procedure sets of
computed ADMs form the basis set for the fitting (as a function of laser fluence and rotational temperature), allowing the
accurate determination of the experimentally-achieved alignment; this is discussed further in Sect. 7.1.1. Level 2 involves
non-linear data fitting, making use of the ADMs and the channel functions, in order to compute observables, and obtaining
the radial matrix elements as the fitted parameters; this is discussed further in Sect. 7.1.2.1

1 As noted elsewhere: here the radial matrix elements are assumed to be time-independent, although that may not be the case for themost complicated
examples including vibronic dynamics, see Quantum Metrology Vol. 2 [9] for further discussion on this point.
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Fig. 7.1: Outline of the 2-stage generalised bootstrap radial matrix elements retrieval protocol (outlined conceptually in
Sect. 4.1.2). In this case, level 1 outlines the determination of ADMs, and level 2 “bootstraps” from this to recover radial
matrix elements and MF observables. Grey inverted trapezoids indicate required inputs to the protocol, green trapezoids
indicate the retrieved quantities.
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Fig. 7.2: Comparison of similar radial matrix elements retrieval protocols, illustrating (left) pure MF case; (middle)
generalised bootstrap protocol; (lower right) matrix inversion protocol (see Ref. [98]); (top right) alignment retrieval.
Grey inverted trapezoids indicate required inputs to the protocol, green trapezoids indicate the retrieved quantities. For
the retrieval from the MF measurements case, no RWP and associated ADMs are required. For the matrix inversion
protocol,MF observables are recovered, but not radial matrix elements, although the latter may be possible by subsequent
analysis of the MF-PADs.
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7.1 Fitting methodologies

In general, the extraction of parameters from a data set can be viewed as a general minimization (fitting) problem. This
type of treatment is versatile, and can be multi-stage depending on the complexity of the problem. For the generalised
bootstrapping method, the treatment of photoionization data is split into two types of fit, as shown in Fig. 7.1. Firstly, a
linear fitting stage to retrieve the molecular axis distribution, characterised by a set of ADMs (see Sect. 6.3.8 for details);
secondly, a non-linear fitting stage to retrieve the complex-valued matrix elements.
In terms of the data, the 1st stage can be written as:

̄𝛽𝑢
𝐿,𝑀(𝜖, 𝑡) = ∑

𝐾,𝑄,𝑆
𝐴𝐾

𝑄,𝑆(𝑡) ̄𝐶𝐿𝑀
𝐾𝑄𝑆(𝜖) (7.1)

And the 2nd stage as per Eqs. (6.13) and (6.17) for the AF case:

̄𝛽𝑢
𝐿,𝑀(𝜖, 𝑡) = ∑

𝜁,𝜁′
Ῡ

𝑢,𝜁𝜁′

𝐿,𝑀 (𝑡)𝕀𝜁𝜁′(𝜖) (7.2)

In these forms, the terms are:
1. 𝐴𝐾

𝑄,𝑆(𝑡), the set of ADMs defining the molecular alignment, and associated parameters ̄𝐶𝐿𝑀
𝐾𝑄𝑆(𝜖).

2. Ῡ𝑢,𝜁𝜁′

𝐿,𝑀 (𝑡), the channel functions in the AF (Eq. (6.17), and matrix elements 𝕀𝜁𝜁′(𝜖).
Hence stage (2) relies on the inputs of stage (1), i.e. the ADMs; and the parameters in stage (1) can be determined via
fitting the data (linear regression) making use of computed sets of 𝐴𝐾

𝑄,𝑆(𝑡) as a function of experimental parameters
(laser fluence and rotational temperature). In this case, a range of ADMs (“basis sets”) are computed, and the best match
to the experimental data chosen - more details are discussed in Sect. 7.1.1. In a similar manner, the 2nd stage makes use
of a known basis set - the channel functions - but a non-linear fit is required to determine the set of matrix elements, see
Sect. 7.1.2.
Finally, it is also of note that, although the case herein focusses on rotational wavepackets as a control parameter, the same
general approach can be applied to other cases, e.g. fitting MF-PADs directly (for which only the 2nd stage is required),
fitting PADs obtained via rotational state-resolved transitions, with shaped laser pulses and so on, as detailed in Quantum
Metrology Vols. 1 & 2 [4, 9]. Although only rotational wavepacket cases are illustrated in this work (see Part II), by
suitable choice of dataset and channel functions many other experimental schemes may be modelled and analysed; the
Photoelectron Metrology Toolkit [5] is designed with this flexibility in mind.

7.1.1 Computation and linear fitting for alignment characterisation

Efforts to align and orient molecules in recent decades have led to detailed studies of the rotational dynamics of molecules
after interaction with a non-resonant femtosecond laser pulse. A significant outcome of these studies has been the devel-
opment of a reliable model capable of accurate simulations of rotational wavepacket dynamics that quantitatively agree
with experimental results. By measurement of a signal from a time evolving rotational wavepacket, this ability to accu-
rately simulate the wavepacket dynamics can be used to reconstruct the measured signal in the MF. Since in this case
the time resolved measurement constitutes a set of measurements of the same quantity from a variety of molecular axes
distributions (sets of ADMs), it is reasonable to conclude that if the axes distributions are known, and provided a large
enough space of orientations is explored by the molecule over the experimental time window, the MF signal should be
extractable.
This is relatively straight forward for a signal that is a single number (scalar) in the MF for a given polarization of the
light, such as the photoionization yield. Such a signal may, in general, be expressed as an expansion,

𝑆(𝜃, 𝜒) = ∑
𝑗𝑘

𝐶𝑗𝑘𝐷𝑗
0𝑘(𝜃, 𝜒), (7.3)
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where 𝜃 and 𝜒 are the MF spherical polar and azimuthal angles of the linearly polarized electric field vector generating
the signal (Sect. 6.3.3); 𝐶𝑗𝑘 are unknown expansion coefficients; and 𝐷𝑗

0𝑘 are theWigner rotation matrix elements, a basis
on the space of orientations. A time resolved measurement of 𝑆 from a rotational wavepacket is the quantum expectation
value of this expression,

⟨𝑆⟩(𝑡) = ∑
𝑗𝑘

𝐶𝑗𝑘⟨𝐷𝑗
0𝑘⟩(𝑡). (7.4)

Since the rotational wavepacket can be accurately simulated, the ⟨𝐷𝑗
0𝑘⟩(𝑡) are considered known. From the measurement

of a time resolved signal ⟨𝑆⟩(𝑡), the unknown coefficients 𝐶𝑗𝑘 can be determined by linear regression, and the molecular
frame signal in Eq. (7.3) constructed. In this form the method was initially applied to strong field ionization and dubbed
Orientation Reconstruction through Rotational Coherence Spectroscopy (ORRCS) [128, 129]. It has since been applied
to strong field ionization of various molecules [130, 131, 132], strong field dissociation [133] and few-photon ionization
[134].2

The case of PADs is a more challenging one, since they are not generally described by Eq. (7.3). Instead, both AF and
MF-PADs are determined by the radial matrix elements, as discussed in Chpt. 6. However, the correspondence of the
problem with an equation of the form of Eq. (7.4) - essentially a convolution - can be made. This is discussed in detail
in Ref. [96]. In the current case Eqs. (6.13) and (6.17) can be rewritten in a similar form to Eq. (7.4) by explicitly
separating out the ADMs 𝐴𝐾

𝑄,𝑆(𝑡) and collapsing all other terms. The case of photoionization from a time-dependent
ensemble can then be reparameterized as indicated in Eq. (7.1). Here the set of axis distribution moments can thus be
viewed as modulating all observables 𝛽𝑢

𝐿,𝑀(𝑡). The unknowns, ̄𝐶𝐿𝑀
𝐾𝑄𝑆 and axis distribution moments 𝐴𝐾

𝑄,𝑆(𝑡), can be
retrieved in a similar manner to that discussed for the simpler scalar observable case above (Eq. (7.4)), i.e. via linear
regression with an RWP basis set.
In practice this equates to (accurately) simulating RWPs, hence obtaining the corresponding 𝐴𝐾

𝑄,𝑆(𝑡) parameters (expec-
tation values), as a function of laser fluence and rotational temperature. Given experimental data, a 2D uncertainty (or
error) surface in these two fundamental quantities can then be obtained from a linear regression for each set of 𝐴𝐾

𝑄,𝑆(𝑡).
The closest set of parameters to the experimental case is then determined by selection of the best results (smallest uncer-
tainty) from such a parameter-space mapping, which constitutes determination of both the rotational wavepacket (hence
𝐴𝐾

𝑄,𝑆(𝑡)) and ̄𝐶𝐿𝑀
𝐾𝑄𝑆(𝜖). Optimally, the corresponding physical properties can be cross-checked with other experimental

estimates for additional confirmation of the fidelity of the protocol, although this may not always be possible. Note that,
in this case, the photoionization dynamics are phenomenologically described by the real parameters ̄𝐶𝐿𝑀

𝐾𝑄𝑆 , but details
of the matrix elements are not obtained directly.
At the time of writing, computation of RWPs and this stage of the bootstrap retrieval protocol analysis is not implemented
in the Photoelectron Metrology Toolkit [5], although is planned for the near future, and has been demonstrated in practice
[1]. The examples in Part II instead make use of computed ADMs directly, essentially corresponding to the assumption
that level 1 of the bootstrap retrieval protocol was successful. Given accurate RWPs, a successful fit to experimental data
is generally assumed to be a given outcome, as this stage of the analysis requires only linear fitting in a two-parameter
basis space.

7.1.2 Non-linear fitting for matrix elements

The nature of the photoionization problem suggests that a fitting approach can work, in general, which can be expressed
(for example) in the standard way as a (non-linear) least-squares minimization problem:

𝜒2(𝕀𝜁𝜁′) = ∑
𝑢

[𝛽𝑢
𝐿,𝑀(𝜖, 𝑡; 𝕀𝜁𝜁′) − 𝛽𝑢

𝐿,𝑀(𝜖, 𝑡)]2
(7.5)

where 𝛽𝑢
𝐿,𝑀(𝜖, 𝑡; 𝕀𝜁𝜁′) denotes the values from a model function, computed for a given set of (complex) matrix elements

𝕀𝜁𝜁′ , and 𝛽𝑢
𝐿,𝑀(𝜖, 𝑡) the experimentally-measured parameters, for a given configuration 𝑢. Implicit in the notation is that

2 A large range of other experimental methods have also addressed alignment and orientation dependence and retrieval, other recent examples
include Coulomb-explosion imaging [135], high-harmonic spectroscopy [136, 137], optical imaging [138] and rotational echo spectroscopy [139], see
Refs. [111, 114] for further discussion.
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the matrix elements are independent of 𝑢 (or otherwise averaged over 𝑢). Once the matrix elements are obtained in this
manner then MF observables, for any arbitrary 𝑢, can be calculated. Generally fitting routines do not handle complex-
valued functions, so the fitting parameter space is usually defined by parameters in magnitude-phase form (Eq. (6.15);
see also discussion in Sect. 6.3.1)
Although in principle a very general approach, outstanding questions with such protocols remain, in particular fit unique-
ness and reproducibility, the optimal measurement space 𝑢 - or associated information content 𝑀𝑢 - for any given case or
measurement schema, how well they will scale to larger problems (more matrix elements/partial waves), the most efficient
fitting methodologies/strategies, and so forth. In general, determination of radial matrix elements is not expected to be
trivial, nor to always be successful, due to the complexity of the problem; one significant issue is the topology of the
𝜒2 hypersurface, which is of 2𝑁 − 1 dimensions (where 𝑁 is the number of radial matrix elements), and may contain
local minima. Exploration of these questions for various exemplar systems is the topic of the Part II, and further general
discussion can be found in Quantum Metrology Vols. 1 & 2 [4, 9], see in particular Quantum Metrology Vol. 2 [9] Sect.
8.2.2.

7.1.3 Implementation in PEMtk

As outlined in Sect. 5.3 and Sect. 5.5, Photoelectron Metrology Toolkit [5] uses the lmfit library [66, 67] to implement
general fitting routines, along with the ePSproc codebase [33, 34, 35] for computation of the required basis sets and
observables. The latter has already been illustrated in Chpt. 6, and the illustration of the former is the subject of Part II.
However, in these demonstrations only the RWP case is investigated, and analysis routines used only a standard Levenberg-
Marquardt least-squares minimization method.
More generally, it is of note that the routines are written to be (somewhat) general and modular, such that other op-
timization methods may readily be implemented - either via those already supported by lmfit library [66, 67] (e.g.
Levenberg-Marquardt, basinhopping, Nelder-Mead and so on - see the lmfit library [66, 67] documentation for sup-
ported methods), or by making use of other fitting libraries and methodologies.
Similarly, modification of the routines to other retrieval schemes should be fairly easy, and usually requires only:

1. a function which computes the required basis set (e.g. channel functions)
2. observables for the problem at hand.

Examples are given in Part II for the generalised bootstrap retrieval protocol, andMF-PADs based retrieval is also imple-
mented in the codebase. For further details see the PEMtk documentation [20], particularly the fitting model backends
and fitting MF and other datasets pages.

7.2 Fitting strategies

The overall approach to complex non-linear fitting incorporates a number of aspects, broadly “fitting strategies”, which
may influence the likelyhood of a successful radial matrix elements retrieval, and/or the time required to achieve this
result:

1. The choice of numerical fitting method (Sect. 7.1.3).
2. The choice of dataset to analyse (and/or the choice of experimental measurement).
3. Additional statistical and/or other meta-analysis.

At the time of writing, work is ongoing in all these areas, and the illustrations in Part II herein include further notes
regarding limitations or expectations for specific cases. Clearly, there are many choices numerically, and detailed inves-
tigation is required to determine the optimal strategy in any given case (this is examined partially in Part II in terms of
limiting cases by symmetry). Emerging data analysis methods may also be useful here, in particular GPU-based routines
and specialist high-dimensional space fitting methods.
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One aspect that is intrinsic to these examples, but has not been discussed elsewhere, is the meta-analysis of the retrieved
radial matrix elements. This is discussed generally in Quantum Metrology Vol. 2 [9] Sect. 8.2.2, and implemented
numerically in the examples in Part II herein. The general aim in this type of analysis is to ascertain whether a given set
of retrieved parameters is accurate and unique in a given case. Naturally, for test cases with synthetic data (as in Part
II), testing against the known input radial matrix elements is the best solution and provides the most stringent test for the
applicability of the retrieval method - but this is, of course, not generally useful for experimental datasets. Instead, as per
previous analysis cases (see Quantum Metrology Vol. 2 [9]), a statistical (or “numerical experiment”) approach can be
used. In this type of approach, a number of fits 𝑛 (typically on the order of 102-104) are run independently, with different
seed parameters and/or different input data (cf. Monte Carlo methods, and statistical bootstrap methods), and the set of
results analysed for consistency and uniqueness over the retrieved parameter sets. As outined in Quantum Metrology Vol.
2 [9] (updated to match the notation herein):

Each fit yields a solution set 𝕀𝜁𝜁′(𝑛), with a final value of 𝜒2(𝕀𝜁𝜁′(𝑛)). Analysis of the fitted parameters
𝜒2(𝕀𝜁𝜁′) can be employed to probe the behaviour of the fitting algorithm, and also to gain information on
how well the experimental data defines each fitted parameter. Although it is non-trivial to visualize the full
𝜒2 hypersurface, aspects can be probed by plotting histograms and correlation plots of the fitted parameters.
A large scatter in the value of a given fit parameter over a range of fits to the same data suggests a poorly
defined parameter; a consistent result meanwhile shows that a particular parameter is well defined by the
dataset. The experimental data can show different sensitivities to different parameters depending on the
type of ionizing transitions present, because different transitions will (according to the magnitude of the
geometrical parameters and symmetry constraints [i.e. channel functions herein]) be more sensitive to certain
partial-waves. Additionally, the presence of multiple minima in the fit may be revealed by the presence of
more than one feature in the histogram, reflecting more than one “best” fit result, while correlations appearing
between supposedly uncorrelated parameters can indicate emergent behaviours in the high-dimensional space
or - more prosaically - issues with the fitting methodology or coding.

---Quantum Metrology Vol. 2 [9], Chpt. 8
The same approach is taken in the case-studies of Part II, which include statistical analysis to determine the “correct”
radial matrix elements from a set of non-linear fits, and associated uncertainties, again with the hope of illustrating general
methods.

7.2. Fitting strategies 97



Quantum Metrology with Photoelectrons Vol. 3 *Analysis methodologies*

98 Chapter 7. Numerical methodologies for extracting matrix elements



Part III

Part II - Extracting matrix elements -
numerical methods & case studies
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CHAPTER

EIGHT

EXTRACTING MATRIX ELEMENTS OVERVIEW

In this part, various case studies are presented. To provide context, and ensure that the examples are transparent and can
be run directly from the source notebooks, there are also chapters covering the general setup and configuration for the
fitting routines. These are, unavoidably, rather technical and code-heavy, so readers only interested in the results should
skip these sections. Additionally, these sections may be rather truncated in hard-copy (or PDF) versions of the text, but
are available in full in the Quantum Metrology Vol. 3 (HTML version) and source notebooks for readers that wish to
perform their own calculations.

Warning: As noted elsewhere, many components of the toolkit are still in active development, and some numerical
details may change. This is particularly true for 3D alignment examples, which are here presented as new, and
provisional, results.

The layout for this part is as follows:
• Technical introductions

– Chapter 9: Basis sets for fitting: introduces methods for setting the basis set used for fitting, defined in terms
of symmetrized harmonics.

– Chapter 10: General fit setup and numerics: introduces methods for setting up the data to fit, and running fits
in various ways.

• Case studies
– Chapter 11: Case study: Generalised bootstrapping for a homonuclear diatomic scattering system,
N_2~(D_{\infty h}): A “simple” 1D case, here the 𝐷∞ℎ molecular symmetry matches the rotational
wavepacket and detection symmetry.

– Chapter 12: Case study: Generalised bootstrapping for a linear heteronuclear scattering system,
OCS~(C_{\infty v}): A more complicated example. In this case, 𝐶∞𝑣, up-down symmetry is broken in
the molecular frame. Fitting for various cases is explored, looking at 1D and 3D alignment.

– Chapter 13: Case study: Generalised bootstrapping for a general asymmetric top scattering system,
C_2H_4~(D_{2h}): The most general example of an asymmetric top system, in this case 𝐶2𝐻4 (ethylene),
𝐶2ℎ. Again various cases and limitations are examined, for 1D and 3D alignment.

• Summary, discussion, conclusions and outlook: Chapter 14 presents a general overview of the case study results -
particularly the density matrix and MF-PADs - and conclusions.
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8.1 General notes on the case studies

The case studies presented herein represent various different types (classes or degrees-of-difficulty) of fitting problem.
They are intended both to indicate ways to proceed in general, and also aim to address what is, and isn’t, possible in these
given cases. The simplest case, 𝑁2, has been well-studied, and reconstruction of radial matrix elements via the bootstrap
retrieval protocol has proved successful in a range of valence ionization cases - see Ref. [1] for the initial experimental
demonstration, and updated analysis using the Photoelectron Metrology Toolkit [5] in Ref. [3], as well as Chapter 11
herein.
The more complex cases, involving 3D alignment, are new, and very much work-in-progress. The current state-of-the-art
is presented herein, but it is of note that these results are provisional, and work is ongoing. In particular, there are a large
range of fitting configuration options and parameters which have yet to be explored in these cases, which may significantly
improve on the current results in terms of computational effort required, reliability of the fitting protocol, and size of the
required dataset. Nonetheless, these new results are interesting and present a stepping-stone for studies on radial matrix
elements retrieval in complex systems, and a launching point for similar studies.
Each case study has a setup script and associated data, which was used to create sample data and configure the bootstrap
retrieval protocol in each case (the general procedure is outlined in Chapter 10). However, since the fitting is computationally
demanding, code execution for large fitting cases is not run upon building the book. Rather the code illustrates the general
procedure (for a small batch), and existing fit data files are used if present. Each case study therefore contains an initial
setup stage which can be used to run fits, or load existing data, prior to analysis.

In each case study, bootstrap retrieval protocol results sets are analysed at length; for a quick overview of results and
fidelities in each case readers may consult the final subsection in each chapter, which provide visual summaries of the
results as both density matrices and MF-PADs, and comparison with the reference case. These results form the basis for
the summary and discussion in Chapter 14, readers not interested in the full technical details may skip directly to that
chapter for general discussion, conclusions and outlook.
Finally, it is of note that - as discussed in the preamble on book versions - output may be significantly truncated in some
cases. Readers wishing to obtain all computational details should pull the source notebooks from QuantumMetrologyVol.
3 (Github repo), or consult the online HTML version at Quantum Metrology Vol. 3 (HTML version). Each case study
notebook is configured to pull the required data files to setup and run fits from the ePSproc [34] Github repo; data files
for the specific example fit results examined in the chapters as published can be obtained separately from the Quantum
Metrology Vol. 3 (Github repo).
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CHAPTER

NINE

BASIS SETS FOR FITTING

As outlined in Part I, particularly Chpt. 6, in order to compute and/or retrieve a set of matrix elements from experimental
results, various physical properties of the system at hand are required. In particular, the symmetry of the system, the
ionizing channel(s) of interest, and the properties of the ionizing radiation are all required to define the basis set used for
radial matrix elements retrieval via fitting (Chpt. 7).
Numerically, there are two main methods to do this demonstrated herein:

1. The use of symmetry to define the basis set, in terms of symmetry-allowed components.
2. The use of ab initio calculations to define the basis functions. In the work presented here, it is specifically ePolyScat

(ePS) [36, 37, 38, 39] matrix elements that are used, since these are also used to generate the synthetic data used
to test the bootstrap retrieval protocol.

Manual creation of basis sets is also possible, and may be useful in some cases, particularly when exploring limiting cases.

9.1 Symmetry-defined basis sets

As illustrated in Sect. 6.2, a set of symmetry-allowed continuum functions can be determined, corresponding to a given
ionizing transition and specific dipole symmetries. Such a basis set defines the allowed matrix elements in terms of a set of
symmetrized harmonics, and these can be used as a basis for fitting with only minimal knowledge of the system required.
The main advantage of a purely symmetry-defined approach is that no additional ab initio computations are required, and
that the resulting basis set is general. As discussed and illustrated in Sect. 6.3, the resulting channel functions can also be
used to guide analysis (and experiment if available prior to experimental work). The main disadvantage of such a blind
approach is that initial data analysis may require significantly more effort than working from a computationally-defined
basis, in particular the initial fitting space may be larger than required (leading to computationally more-demanding fitting
runs), and testing for contributing/non-negligible terms by, e.g. using varying 𝑙𝑚𝑎𝑥, may be required in initial fitting runs.
For further discussion, see Quantum Metrology Vols. 1 & 2 [4, 9].

9.2 Computationally-defined basis sets

In cases where photoionization calculations are available, the results can also be used to determine allowed basis compo-
nents. Use of ab initio computational results is, of course, useful for simulation as well as direct analysis, and may lead to
a reduced basis set relative to the symmetry-defined case, since some components may be small and can be ignored. How-
ever, it does also require that substantial calculations are performed (or results are available, e.g. from ePSdata [48]), and
- potentially - may bias the matrix element analysis/retrieval in cases where the experimental results and computational
results are significantly different.
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9.3 Basis creation worked examples

In the case study chapters, basis functions are created for each case at hand, typically starting from ab initio computational
results (since these are required to simulate the sample data). Here a more detailed worked example is given to illustrate
the basic methodology behind the assignments, the differences between the approaches, and highlight some issues of
convention which may arise.

9.3.1 Simple case: 𝑁2 3𝜎−1
𝑔 ionization

As a simple example, consider the case of a homonuclear diatomic (𝐷∞ℎ PG, cylindrically symmetric), and a totally
symmetric ionizing orbital, e.g. the ionization of the Σ+

𝑔 HOMO of 𝑁2. For this example,

• Γ𝑖 = Γ+ = Γ𝑠 = Σ+
𝑔 . Note that, for single-electron ionization from a fully-occupied valence orbitals, the ion

symmetry will correspond to the hole symmetry, hence the symmetry of the ionized orbital. This simple picturemay
break down for more complicated cases, e.g. if multi-electron effects or substantial nuclear motions are involved;
for radical systems the overall symmetry of all partially-occupied orbitals must be accounted for.

• The dipole symmetries correspond to the Cartesian axes/translations given in the character tables, hence Σ+
𝑢 = (𝑧)

and Π𝑢 = (𝑥, 𝑦) for 𝐷∞ℎ. Note that, in this cylindrically symmetric case, the Cartesian (𝑥, 𝑦) components
are spanned by the doubly-degenerate Π𝑢 irreducible representation - physically this corresponds to the arbitrary
orientation of these axes in the MF (i.e. no preferred direction is defined).

Following Eq. (6.12), the allowed components (irreducible representations) can be determined by hand making use of
character and direct product tables, and substituting in for the terms defined above:

Γ+ ⊗ Γ𝑒 ⊗ Γdipole ⊗ Γ𝑖 ⊇ Σ+
𝑔 (9.1)

Σ+
𝑔 ⊗ Γ𝑒 ⊗ Π𝑢 (𝑥, 𝑦)

Σ+
𝑢 (𝑧) ⊗ Σ+

𝑔 ⊇ Σ+
𝑔 (9.2)

Σ+
𝑔 ⊗ Γ𝑒 ⊗ Π𝑢 (𝑥, 𝑦)

Σ+
𝑢 (𝑧) ⊇ Σ+

𝑔 (9.3)

Γ𝑒 ⊗ Π𝑢 (𝑥, 𝑦)
Σ+

𝑢 (𝑧) ⊇ Σ+
𝑔 (9.4)

Group theory character tables and related
Character tables, direct product tables and related information can be found at various sources online, or in textbooks,
e.g. Refs. [140, 141, 142]. For 𝐷∞ℎ the pages at symmetry.jacobs-university.de provide a good quick reference; for
extended tables including spherical harmonic symmetries and direct products the pages from G. Katzers are useful.

Hence the allowed continuum components are given by:

Γ𝑒 = Π𝑢 (𝑥, 𝑦)
Σ+

𝑢 (𝑧) (9.5)

As indicated above, this case is split by symmetry into a “parallel” and “perpendicular” continua, accessed by the 𝑧 or
(𝑥, 𝑦) dipole components in the MF respectively; these are often denote generically by appending ⟂ and ∥ symbols to
derived quantities, e.g. 𝜎∥ for the corresponding cross-section. In the LF or AF these continua can be mixed according
to the polarization state and geometry of the ionizing radiation, and the molecular alignment (ADMs).
The total scattering state symmetry is often also used to label continuum states, and is given by Γscat = Γ+ ⊗ Γ𝑒:

Γscat = Σ+
𝑔 ⊗ Π𝑢 (𝑥, 𝑦)

Σ+
𝑢 (𝑧) = Π𝑢 (𝑥, 𝑦)

Σ+
𝑢 (𝑧) (9.6)

This is identical to Γ𝑒 in this simple case.
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9.3.2 Degenerate case example: 𝑁2 3𝜋−1
𝑢 ionization

For more complicated cases, multiple symmetry components may be found. For example, the ionization from a Π𝑢
orbital, e.g. 𝑁2 HOMO-1.
In this case, Γ+ = Π𝑢, and - working through the direct products as above - yields the allowed continuum components:

Γ𝑒 = Σ+
𝑔 + Δ𝑔 (𝑥, 𝑦)

Π𝑔 (𝑧) (9.7)

And total scattering state symmetries:

Γscat = Π𝑢 ⊗ Σ+
𝑔 + Δ𝑔 (𝑥, 𝑦)

Π𝑔 (𝑧) = Π𝑢 + Δ𝑢 + Φ𝑢 (𝑥, 𝑦)
Σ+

𝑢 + Σ−
𝑢 + Δ𝑢 (𝑧) (9.8)

In this case, the direct product results give multiple components for each continua. However, since the continuum wave-
function is already defined for multiple components, as given by Γ𝑒, only the first Γscat symmetry is required as a unique
label here. In this case, therefore, Γscat = Π𝑢 (𝑥, 𝑦) and Γscat = Σ+

𝑢 (𝑧) suffice to label the total scattering states.

9.3.3 Defining symmetrized harmonics

In the examples above, the allowed irreducible representations are defined by hand fromdirect product tables for illustrative
purposes. But, in general, it is tedious to categorize/define the allowed spherical harmonics and linear combinations. With
the Photoelectron Metrology Toolkit [5], both the direct products illustrated above, and the determination of associated
spherical harmonics, can be automated and the full basis set rapidly defined numerically. This was illustrated briefly in
Sect. 6.2, and is extended here for the example cases above.

Note: Full tabulations of the parameters available in HTML or notebook formats only.

Computationally, the cylindrically-symmetric ∞ groups can be approximated by a high-order group, e.g. 𝐷∞ℎ ≈ 𝐷10ℎ.
(For a cross-check, see the full tables and direct products online.) Here the notational convention is𝐴1 = Σ+, 𝐴2 = Σ−,
𝐸1 = Π, 𝐸2 = Δ and so forth (see the 𝐷∞ℎ character table for more details).

# Example following symmetrized harmonics demo

# Import class
from pemtk.sym.symHarm import symHarm

# Compute hamronics for D10h, lmax=4
sym = 'D10h'
lmax=4

symObjA1g = symHarm(sym,lmax)

# Allowed terms and mappings are given in 'dipoleSyms'
# symObj.dipole['dipoleSyms']

*** Mapping coeffs to ePSproc dataType = matE
Remapped dims: {'C': 'Cont', 'mu': 'it'}
Added dim Eke

(continues on next page)
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(continued from previous page)

Added dim Targ
Added dim Total
Added dim mu
Added dim Type
Found dipole symmetries:
{'A2u': {'m': [0], 'pol': ['z']}, 'E1u': {'m': [-1, 1, -1, 1], 'pol': ['x', 'y']}}

# Setting the symmetry for the neutral and ion allows direct products to be computed,
# and allowed terms to be determined.

sNeutral = 'A1g'
sIonSG = 'A1g'

symObjA1g.directProductContinuum([sNeutral, sIonSG])

# Results are pushed to self.continuum, in dictionary and Pandas DataFrame formats,
# and can be manipulated using standard functionality.
# The subset of allowed values are also set to a separate DataFrame and list.

# Glue figure for later - real part only in this case
# Also clean up axis labels from default state labels ('LM' and 'LM_p' in this case).
glue("dipoleTermsD10hA1g", symObjA1g.continuum['allowed']['PD'])

allowed m pol result terms
Dipole Target
A2u A2u True [0] [z] [A1g] [A1g, A1g]
E1u E1u True [-1, 1, -1, 1] [x, y] [A1g, A2g, E2g] [A1g, A1g]

Fig. 9.1: Dipole-allowed continuum symmetries (“Target”) for 𝐷10ℎ, 𝐴1𝑔 ionization.

# Setting the symmetry for the neutral and ion allows direct products to be computed,
# and allowed terms to be determined.

sNeutral = 'A1g'
sIonPU = 'E1u'

# Define new object for E1u case
symObjE1u = symHarm(sym,lmax)
symObjE1u.directProductContinuum([sNeutral, sIonPU])

# Results are pushed to self.continuum, in dictionary and Pandas DataFrame formats,
# and can be manipulated using standard functionality.
# The subset of allowed values are also set to a separate DataFrame and list.

# Glue table for later
glue("dipoleTermsD10hE1u", symObjE1u.continuum['allowed']['PD'])

The allowed terms can be further expressed in terms of the spherical harmonic components.

# Basis table with the Character values limited to those defined in
# self.continuum['allowed']['PD'] Target column

(continues on next page)

106 Chapter 9. Basis sets for fitting



Quantum Metrology with Photoelectrons Vol. 3 *Analysis methodologies*

allowed m pol result terms
Dipole Target
A2u E1g True [0] [z] [A1g, A2g, E2g] [A1g, E1u]
E1u A1g True [-1, 1, -1, 1] [x, y] [A1g, A2g, E2g] [A1g, E1u]

A2g True [-1, 1, -1, 1] [x, y] [A1g, A2g, E2g] [A1g, E1u]
E2g True [-1, 1, -1, 1] [x, y] [A1g, A2g, E2g, E4g] [A1g, E1u]

Fig. 9.2: Dipole-allowed continuum symmetries (“Target”) for 𝐷10ℎ, 𝐸1𝑢 ionization.

(continued from previous page)

symObjE1u.displayXlm(symFilter = True, YlmType='comp')

# Glue table for later
glue("dipoleTermsD10hBasis", symObjE1u.displayXlm(symFilter = True,

YlmType='comp', returnPD=True))

b
l 0 1 2 3 4

Character ($\Gamma$) SALC (h) PFIX ($\mu$) m
A1g 0 0 0 (1+0j)

1 0 0 (1+0j)
2 0 0 (1+0j)

E1g 0 0 -1 (0.7071067811865475+0j)
1 (0.7071067811865475-0j)

1 -1 (-0.7071067811865475-0j)
1 (0.7071067811865475-0j)

1 0 -1 (0.7071067811865475+0j)
1 (0.7071067811865475-0j)

1 -1 (-0.7071067811865475-0j)
1 (0.7071067811865475-0j)

E2g 0 0 -2 (0.7071067811865475+0j)
2 (0.7071067811865475+0j)

1 -2 (-0.7071067811865475+0j)
2 (0.7071067811865475+0j)

1 0 -2 (0.7071067811865475+0j)
2 (0.7071067811865475+0j)

1 -2 (-0.7071067811865475+0j)
2 (0.7071067811865475+0j)

Fig. 9.3: Dipole-allowed basis set for 𝐷10ℎ, 𝐸1𝑢 ionization.
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9.3.4 Mapping symmetrized harmonics to fit parameters

The final preparatory steps for tackling a specific retrieval problem is to map the allowed channels to photoionization
matrix elements - including the assignment of anymissing terms - and from these to fitting paramters. Thematrix elements
are currently defined in the Photoelectron Metrology Toolkit [5] and the ePSproc codebase [33, 34, 35] following the
definitions in ePolyScat (ePS) [36, 37, 38, 39], and the symmetry-defined cases can be remapped to this format. (Further
information can be found in the PEMtk documentation [20].) For a comparison with ab initio matrix elements, see Sect.
9.4.

1. For symmetry-defined basis sets, these must first be mapped to an ePSproc data structure, although this step is not
necessary when working from ab initio basis sets. This is explored in Sect. 9.3.4.

2. From a given basis set, the parameters used for fitting data are determined. This converts the parameters to lmfit
library [66, 67] objects in magnitude-phase form, and (optionally) sets various symmetry relations and constraints.
This is explored in Sect. 9.3.4.

Further examples can be found in the remainder of this text, and also in the PEMtk documentation [20].

Remapping to ePolyScat definitions

In the remapping, the code attempts to assign all the symmetries matching ePolyScat definitions from the direct products.
A worked example is given in the code blocks in this section, including a full output table and graphical illustration (Fig.
9.4).
The terms are:

1. Cont is the continuum (free electron) symmetry, Γ𝑒.
2. Targ is the target state symmetry, Γ+.
3. Total is the overall symmetry of the scattering state, Γscat = Γ+ ⊗ Γ𝑒.

Additionally, the current default remapping changes some of the terms defined by the symmetrized harmonics routines
and conventions:

• Symmetry C > Cont (continuum symmetry label in ePSproc)
• Index h > it (degeneracy index in ePSproc)
• Index mu > muX (to avoid confusion with photon index mu in ePSproc)

Note, in particular, that 𝜇 is - unfortunately - the photon polarization term in the conventional photoionization equations,
but also used in the standard definition of the symmetrized harmonics as a degeneracy index. In some cases, the sym-
metrization indicies 𝜇 or ℎ may be redundant, and can be dropped or summed over, but care must be taken here to avoid
breaking the symmetry of the simplified basis set.
Finally, the remapping adds additional labels used by ePolyScat (ePS) [36, 37, 38, 39], but which are not necessarily
required in general:

• Type: for ePolyScat results, this labels length or velocity gauge results; this is assigned as U (unassigned) in the
conversion.

• Eke: the photoelectron kinetic energy, for the basis states this is just set to 0.
• mu: this is set to NaN by the main routine; if the ionizing channel symmetries are defined these values (the photon
polarization) can be determined from the dipole-allowed terms, and this is done by the assignSymMuTerms()
method, as illustrated below.
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# Run conversion with a different dimMap & dataType - note this includes all␣
↪symmetries,

# and both real and complex harmonic basis sets
dataType = 'matE'

# With custom dim mapping (optional)...
dimMap = {'C':'Cont', 'mu':'it'} # Default dimMap = {'C':'Cont','h':'it', 'mu':'muX

↪'}
# dimMap = {'C':'Cont','h':'it', 'mu':'muX'} # Default case

# Map to ePSproc definitions
symObjA1g.toePSproc(dataType=dataType, dimMap=dimMap)

# To assign specific terms, use self.assignMissingSym
# Note this can take a single value, or a list which must match the size of the
# Sym multiindex defined in the Xarray dataset.
symObjA1g.assignMissingSym('Targ', sIonSG)

# To define terms from produts, use self.assignMissingSymProd
symObjA1g.assignMissingSymProd()

# To attempt to assign mu values (by symmetry), use self.assignSymMuTerms()
symObjA1g.assignSymMuTerms()

# Show Pandas table of results
symObjA1g.coeffs['symAllowed']['PD'].fillna('')

*** Mapping coeffs to ePSproc dataType = matE
Remapped dims: {'C': 'Cont', 'mu': 'it'}
Added dim Eke
Added dim Targ
Added dim Total
Added dim mu
Added dim Type
*** Updated self.coeffs['matE'] with new coords.
Assigned 'Total' from A1g x A1g = ['A1g']
Assigned 'Total' from A1g x A2u = ['A2u']
Assigned 'Total' from A1g x E1g = ['E1g']
Assigned 'Total' from A1g x E1u = ['E1u']
Assigned 'Total' from A1g x E2g = ['E2g']
Assigned 'Total' from A1g x E2u = ['E2u']
Assigned 'Total' from A1g x E3g = ['E3g']
Assigned 'Total' from A1g x E3u = ['E3u']
Assigned 'Total' from A1g x E4g = ['E4g']
*** Updated self.coeffs['matE'] with new coords.
Assigned dipole-allowed terms for dim = 'Cont' to self.coeffs['symAllowed']
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Cont A2u E1u
Eke Targ Total Type h it l m mu
0 A1g A2u U 0 0 1 0 0 (1+0j)

1 0 3 0 0 (1+0j)
E1u U 0 0 1 -1 -1 (0.7071067811865475+0j)

1 (0.7071067811865475+0j)
1 -1 (-0.7071067811865475-0j)

1 (-0.7071067811865475-0j)
1 1 -1 -1 (-0.7071067811865475+0j)

1 (-0.7071067811865475+0j)
1 -1 (-0.7071067811865475-0j)

1 (-0.7071067811865475-0j)
1 0 3 -1 -1 (0.7071067811865475+0j)

1 (0.7071067811865475+0j)
1 -1 (-0.7071067811865475-0j)

1 (-0.7071067811865475-0j)
1 3 -1 -1 (-0.7071067811865475+0j)

1 (-0.7071067811865475+0j)
1 -1 (-0.7071067811865475-0j)

1 (-0.7071067811865475-0j)

# Plot values
%matplotlib inline
titleString=f'Symmetrized matrix elements defined for {sym}, {sNeutral}$^{{-1}}$␣

↪ionization'

*_, gFig = ep.lmPlot(symObjA1g.coeffs['symAllowed']['XR']['b (comp)'],
titleString=titleString, xDim={'LM':['l','m']}, sumDims='h',
labelCols = [1,1])

# Glue figure for later
glue("matEremapD10hA1g", gFig.fig)

Mapping to fitting parameters (and reduction)

Finally, the basis set of matrix elements can be assigned to a set of fitting parameters. In this case, as per Eq. (6.15), the
parameters are mapped to magnitude-phase form; additionally, the fitting routine allows for the definition of relationships
between the parameters. This provides a way to reduce the effective size of the basis set to only the unique values,
with other terms defined purely by their symmetry relations. Consequently, degenerate cases, as detailed above, as well
as cases with defined phase relations, can be efficiently reduced to a smaller basis set for fitting. Note that the default
routine labels parameters by the full set of quantum numbers, with an m or p prefix to denote the magnitude and phase
terms corresponding to the partial-wave channel; this ensures a unique naming scheme, but is also rather unwieldy (as
can be seen below). In cases where fewer quantum numbers are required these can be defined and the parameter names
remapped, see the PEMtk documentation [20] for further details.
For quick setup, there is an automated routine to set relations if applicable. The automated routine currently checks for
the following relationships: identity (equal complex values), magnitude and phase equality, complex rotations by ±𝜋,
where matrix elements are grouped by symmetry (specifically Cont) and l prior to pair-wise testing. For more control,
additional functions can be passed. Alternatively, the automatic setting can be skipped and/or relationships redefined or set
manually. This provides a way to test if the symmetry-definitions are manifest in experimental data, rather than imposing
them during fitting, or to explore other possible correlations between fitted parameters. Note, however, that in some cases
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Fig. 9.4: Dipole-allowed continuum matrix elements for 𝐷10ℎ, 𝐴1𝑔 ionization, arranged by (𝑙, 𝑚).
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the number of unique parameters in an unsymmetrized case may be large, so care should also be taken to ensure that fit
results are meaningful in such cases (e.g. by employing a sufficiently large dataset, and testing for reproducibility).

# Default matrix element relationship tests are set by symCheckDefns
from pemtk.fit._sym import symCheckDefns

symCheckDefns()

{'i': {'name': 'identity',
'lam': <function pemtk.fit._sym.symCheckDefns.<locals>.<lambda>(x)>,
'transform': False,
'constraint': 'x'},

'abs': {'name': 'abs',
'lam': <function pemtk.fit._sym.symCheckDefns.<locals>.<lambda>(x)>,
'transform': True,
'constraint': 'm_x'},

'phase': {'name': 'phase',
'lam': <function pemtk.fit._sym.symCheckDefns.<locals>.<lambda>(x)>,
'transform': True,
'constraint': 'p_x'},

'crot_p': {'name': 'Complex rotation +pi/2',
'lam': <function pemtk.fit._sym.symCheckDefns.<locals>.<lambda>(x)>,
'transform': False,
'constraint': 'arctan2(sin(p_x+pi/2), cos(p_x+pi/2))'},

'crot_m': {'name': 'Complex rotation -pi/2',
'lam': <function pemtk.fit._sym.symCheckDefns.<locals>.<lambda>(x)>,
'transform': False,
'constraint': 'arctan2(sin(p_x-pi/2), cos(p_x-pi/2))'}}

Automated assignment from defined matrix elements
The code blocks below illustrate the automated routine, and results are tabulated in Fig. 9.5.

from pemtk.fit.fitClass import pemtkFit

# Example using data class (setup in init script)
data = pemtkFit()

# Set to new key in data class
dataKey = sym
data.data[dataKey] = {}

# Assign allowed matrix elements to fit object
dataType = 'matE'
# General case - just use complex coeffs directly
# data.data[dataKey][dataType] = symObj.coeffs[dataType]['b (comp)']

# Specific case - e.g. sum over 'h'
data.data[dataKey][dataType] = symObjA1g.coeffs['symAllowed']['XR']['b (comp)'].sum('h

↪')

# Propagate attrs
data.data[dataKey][dataType].attrs = symObjA1g.coeffs['symAllowed']['XR'].attrs

# Update selection with options
# E.g. Matrix element sub-selection

(continues on next page)
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(continued from previous page)

# data.selOpts['matE'] = {'thres': 0.01, 'inds': {'Type':'U','Cont':'A1'}}
data.selOpts['matE'] = {'thres': 0.01, 'inds': {'Type':'U'}}
data.setSubset(dataKey = sym, dataType = 'matE') #, resetSelectors=True) #␣

↪Subselect from 'orb5' dataset, matrix elements

# And for the polarisation geometries...
# data.selOpts['pol'] = {'inds': {'Labels': 'z'}}
# data.setSubset(dataKey = 'pol', dataType = 'pol')

Subselected from dataset 'D10h', dataType 'matE': 72 from 540 points (13.33%)

# Set matrix elements to fitting parameters
# Running for the default case will attempt to automatically set the relations␣

↪between
# matrix elements according to symmetry.
data.setMatEFit()

Modifying fitting basis parameters
A brief illustration of defining constraints is given below, for more details see the PEMtk documentation [20], particularly
the basic fitting guide. For more details on the base lmfit parameters class that is used here, see lmfit library [66, 67],
particularly the documentation on parameters and constraints.

Note: Full tabulations of the parameters available in HTML or notebook formats only.

# Set parameters with NO constraints set (except a reference phase)
data.setMatEFit(paramsCons = None)

# To add manual constraints
# Set param constraints as dict
# Any basic mathematical relations can be set here,
# see https://lmfit.github.io/lmfit-py/constraints.html
paramsCons = {}
paramsCons['m_A2u_0_A1g_A2u_1_0_0_0'] = '5*m_A2u_0_A1g_A2u_3_0_0_0'

# Missing settings will generate an error message
paramsCons['test'] = 'p_PU_SG_PU_3_1_n1_1'

# Init parameters with specified constraints
data.setMatEFit(paramsCons = paramsCons)

# Individual parameters can be addressed by name,

data.params['m_E1u_0_A1g_E1u_1_n1_n1_0']

<Parameter 'm_E1u_0_A1g_E1u_1_n1_n1_0', value=0.7071067811865475, bounds=[0.0001:5.
↪0]>
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name value stderr vary expr init_value min max brute_step correl
0 m_A2u_0_A1g_A2u_1_0_0_0 1.000 None True None 1.000 1.000e-04 5.000 None None
1 m_A2u_0_A1g_A2u_3_0_0_0 1.000 None True None 1.000 1.000e-04 5.000 None None
2 m_E1u_0_A1g_E1u_1_n1_n1_0 0.707 None True None 0.707 1.000e-04 5.000 None None
3 m_E1u_0_A1g_E1u_1_n1_n1_1 0.707 None True None 0.707 1.000e-04 5.000 None None
4 m_E1u_0_A1g_E1u_1_n1_1_0 0.707 None False m_E1u_0_A1g_E1u_1_n1_n1_0 0.707 1.000e-04 5.000 None None
5 m_E1u_0_A1g_E1u_1_n1_1_1 0.707 None False m_E1u_0_A1g_E1u_1_n1_n1_0 0.707 1.000e-04 5.000 None None
6 m_E1u_0_A1g_E1u_1_1_n1_0 0.707 None False m_E1u_0_A1g_E1u_1_n1_n1_0 0.707 1.000e-04 5.000 None None
7 m_E1u_0_A1g_E1u_1_1_n1_1 0.707 None False m_E1u_0_A1g_E1u_1_n1_n1_0 0.707 1.000e-04 5.000 None None
8 m_E1u_0_A1g_E1u_1_1_1_0 0.707 None False m_E1u_0_A1g_E1u_1_n1_n1_0 0.707 1.000e-04 5.000 None None
9 m_E1u_0_A1g_E1u_1_1_1_1 0.707 None False m_E1u_0_A1g_E1u_1_n1_n1_0 0.707 1.000e-04 5.000 None None
10 m_E1u_0_A1g_E1u_3_n1_n1_0 0.707 None True None 0.707 1.000e-04 5.000 None None
11 m_E1u_0_A1g_E1u_3_n1_n1_1 0.707 None True None 0.707 1.000e-04 5.000 None None
12 m_E1u_0_A1g_E1u_3_n1_1_0 0.707 None False m_E1u_0_A1g_E1u_3_n1_n1_0 0.707 1.000e-04 5.000 None None
13 m_E1u_0_A1g_E1u_3_n1_1_1 0.707 None False m_E1u_0_A1g_E1u_3_n1_n1_0 0.707 1.000e-04 5.000 None None
14 m_E1u_0_A1g_E1u_3_1_n1_0 0.707 None False m_E1u_0_A1g_E1u_3_n1_n1_0 0.707 1.000e-04 5.000 None None
15 m_E1u_0_A1g_E1u_3_1_n1_1 0.707 None False m_E1u_0_A1g_E1u_3_n1_n1_0 0.707 1.000e-04 5.000 None None
16 m_E1u_0_A1g_E1u_3_1_1_0 0.707 None False m_E1u_0_A1g_E1u_3_n1_n1_0 0.707 1.000e-04 5.000 None None
17 m_E1u_0_A1g_E1u_3_1_1_1 0.707 None False m_E1u_0_A1g_E1u_3_n1_n1_0 0.707 1.000e-04 5.000 None None
18 p_A2u_0_A1g_A2u_1_0_0_0 0.000 None False None 0.000 -3.142e+00 3.142 None None
19 p_A2u_0_A1g_A2u_3_0_0_0 0.000 None True None 0.000 -3.142e+00 3.142 None None
20 p_E1u_0_A1g_E1u_1_n1_n1_0 0.000 None True None 0.000 -3.142e+00 3.142 None None
21 p_E1u_0_A1g_E1u_1_n1_n1_1 3.142 None True None 3.142 -3.142e+00 3.142 None None
22 p_E1u_0_A1g_E1u_1_n1_1_0 0.000 None False p_E1u_0_A1g_E1u_1_n1_n1_0 0.000 -3.142e+00 3.142 None None
23 p_E1u_0_A1g_E1u_1_n1_1_1 3.142 None False p_E1u_0_A1g_E1u_1_n1_n1_1 3.142 -3.142e+00 3.142 None None
24 p_E1u_0_A1g_E1u_1_1_n1_0 3.142 None False p_E1u_0_A1g_E1u_1_n1_n1_1 3.142 -3.142e+00 3.142 None None
25 p_E1u_0_A1g_E1u_1_1_n1_1 3.142 None False p_E1u_0_A1g_E1u_1_n1_n1_1 3.142 -3.142e+00 3.142 None None
26 p_E1u_0_A1g_E1u_1_1_1_0 3.142 None False p_E1u_0_A1g_E1u_1_n1_n1_1 3.142 -3.142e+00 3.142 None None
27 p_E1u_0_A1g_E1u_1_1_1_1 3.142 None False p_E1u_0_A1g_E1u_1_n1_n1_1 3.142 -3.142e+00 3.142 None None
28 p_E1u_0_A1g_E1u_3_n1_n1_0 0.000 None True None 0.000 -3.142e+00 3.142 None None
29 p_E1u_0_A1g_E1u_3_n1_n1_1 3.142 None True None 3.142 -3.142e+00 3.142 None None
30 p_E1u_0_A1g_E1u_3_n1_1_0 0.000 None False p_E1u_0_A1g_E1u_3_n1_n1_0 0.000 -3.142e+00 3.142 None None
31 p_E1u_0_A1g_E1u_3_n1_1_1 3.142 None False p_E1u_0_A1g_E1u_3_n1_n1_1 3.142 -3.142e+00 3.142 None None
32 p_E1u_0_A1g_E1u_3_1_n1_0 3.142 None False p_E1u_0_A1g_E1u_3_n1_n1_1 3.142 -3.142e+00 3.142 None None
33 p_E1u_0_A1g_E1u_3_1_n1_1 3.142 None False p_E1u_0_A1g_E1u_3_n1_n1_1 3.142 -3.142e+00 3.142 None None
34 p_E1u_0_A1g_E1u_3_1_1_0 3.142 None False p_E1u_0_A1g_E1u_3_n1_n1_1 3.142 -3.142e+00 3.142 None None
35 p_E1u_0_A1g_E1u_3_1_1_1 3.142 None False p_E1u_0_A1g_E1u_3_n1_n1_1 3.142 -3.142e+00 3.142 None None

Fig. 9.5: Fitting parameters as assigned for 𝐷10ℎ, 𝐴1𝑔 ionization. Note the vary column, which defines the symmetry-
unique values for fitting, whilst the expression column indicates the relationships of the non-unique values to the
floated parameters.
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# Properties can be modified directly...
data.params['m_A2u_0_A1g_A2u_3_0_0_0'].value = 1.777

# ...or by using lmfit's `.set()` method.
data.params['m_E1u_0_A1g_E1u_1_n1_n1_0'].set(value = 1.36)
data.params['m_E1u_0_A1g_E1u_1_n1_n1_0'].set(vary = False)
data.params['m_E1u_0_A1g_E1u_1_n1_n1_0']

<Parameter 'm_E1u_0_A1g_E1u_1_n1_n1_0', value=1.36 (fixed), bounds=[0.0001:5.0]>

# The full set can always be checked via self.params
data.params

# The full mapping of parameter names and indexes is given in self.lmmu
data.lmmu

Manually setting fitting basis
To modify and/or set a basis set manually, the same functions can be used with different inputs and/or options. A few
examples are given here, see the PEMtk documentation [20] for more information.

# Manual configuration of matrix elements
# Example using data class
dataManual = pemtkFit()

# Manual setting for matrix elements
# See API docs at https://epsproc.readthedocs.io/en/dev/modules/epsproc.util.setMatE.

↪html
EPoints = 10
dataManual.setMatE(data = [[0,0, *np.ones(EPoints)], [2,0, *np.linspace(0,1,EPoints)],

↪ [4,0, *np.linspace(0,0.5,EPoints)]],
dataNames=['l','m'])

# Matrix elements are set to Xarray and Pandas formats, under the 'matE' key
dataManual.data['matE']['matE'].pd

# To use manual settings for fitting, set `conformDims=True` to ensure ePSproc␣
↪labelling

dataManual.setMatE(data = [[0,0, *np.ones(EPoints)], [2,0, *np.linspace(0,1,EPoints)],
↪ [4,0, *np.linspace(0,0.5,EPoints)]],

dataNames=['l','m'], conformDims=True)

# Then use as normal
dataManual.selOpts['matE'] = {'thres': 0.01, 'inds': {'Type':'U', 'Eke':1} }
dataManual.setSubset(dataKey = 'matE', dataType = 'matE')
dataManual.data[data.subKey]['matE']['it'] = [1] # In some cases NaN values may␣

↪need to be set for setMatEFit.
dataManual.setMatEFit()
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9.4 Comparison with symmetry-defined and computational matrix el-
ements

For comparison of a given symmetry-defined basis set with sample ab initio calculations using ePolyScat (ePS) [36, 37,
38, 39] calculations, results can be computed locally or pulled from the web. Some sample/test datasets can be found
as part of the ePSproc repo, which includes the case study examples herein. Further ePolyScat (ePS) [36, 37, 38, 39]
datasets are available from ePSdata [48], and data can be pulled using the python ePSdata interface.
In the following, the test case above for 𝑁2 3𝜎−1

𝑔 ionization is illustrated. Note that this comparison shows the results
of a full ab initio computation of the matrix elements (Eq. (6.3)) versus the symmetry-allowed harmonics and associated
𝑏Γ𝜇

ℎ𝑙𝜆 parameters (Eq. (6.37)). In the former case, the 𝑏Γ𝜇
ℎ𝑙𝜆 are incorporated into the numerical results, but the full

angular momentum selection rules and dipole integrals are also included; in the latter case the 𝑏Γ𝜇
ℎ𝑙𝜆 parameters serve to

define the allowed matrix elements, and symmetry relations (e.g. phase, rotations and degeneracy), but do not include
any other effects. Hence the comparison here indicates whether the symmetry-defined basis set is sufficient for a matrix
element reconstruction, but it may contain terms which are zero in practice, or otherwise drop out from the complete
photoionization treatment. Some conventions may also be different.

# Pull N2 data from ePSproc Github repo
dataName = 'n2Data'

# Set data dir
dataPath = Path(Path.cwd(), dataName)

# For pulling data from Github, a utility function is available
# This requires the repo subpath, and optionally branch
fDictMatE, fAllMatE = ep.util.io.getFilesFromGithub(subpath='data/photoionization/n2_

↪multiorb',
dataName=dataName, ref='dev') #␣

↪Optional settings

Querying URL: https://api.github.com/repos/phockett/epsproc/contents/data/
↪photoionization/n2_multiorb?ref=dev

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪n2Data/n2_1pu_0.1-50.1eV_A2.inp.out already exists

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪n2Data/n2_3sg_0.1-50.1eV_A2.inp.out already exists

# Import data with PEMtk class
# For more details on ePSproc usage see
# https://epsproc.readthedocs.io/en/dev/demos/ePSproc_class_demo_161020.html

# Instantiate class object.
# Minimally this needs just the dataPath, if verbose = 1 is set
# then some useful output will also be printed.
data = pemtkFit(fileBase=dataPath, verbose = 1)

# ScanFiles() - this will look for data files on the path provided, and read from␣
↪them.

data.scanFiles()

*** Job subset details
Key: subset
No 'job' info set for self.data[subset].

(continues on next page)
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(continued from previous page)

*** Job orb6 details
Key: orb6
Dir /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/n2Data, 1␣

↪file(s).
{ 'batch': 'ePS n2, batch n2_1pu_0.1-50.1eV, orbital A2',

'event': ' N2 A-state (1piu-1)',
'orbE': -17.09691397835426,
'orbLabel': '1piu-1'}

*** Job orb5 details
Key: orb5
Dir /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/n2Data, 1␣

↪file(s).
{ 'batch': 'ePS n2, batch n2_3sg_0.1-50.1eV, orbital A2',

'event': ' N2 X-state (3sg-1)',
'orbE': -17.34181645456815,
'orbLabel': '3sg-1'}

# Format and display results from previous cell (hidden in some formats)
display_html(df1_styler._repr_html_()+df2_styler._repr_html_(), raw=True)

Here (Σ𝑢 case) the basis sets are identical, aside from the difference in 𝑙𝑚𝑎𝑥.

Here (Π𝑢 case) the symmetry-defined basis has two degenerate continua, it=0,1, with a phase rotation applied between
them. For it=0 the ±𝑚 terms are anti-phase, whilst for it=1 they are in-phase (all negative). For the ePS basis, only
the anti-phase component is present, and is further reduced to terms with 𝑚 and 𝑚𝑢 of opposite sign. These differences
are due to additional restrictions imposed by angular momentum selection rules, which are not included in the symmetry-
defined case.
In general, the current mappings should be suitable for simulation and reconstruction, but care should be taken to:

1. Confirm symmetry and angular momentum relations for a given case.
2. Apply additional transformations if comparison with computational results is required.
3. Add degeneracy factors if required (otherwise these will be subsumed into matrix element values).
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CHAPTER

TEN

GENERAL FIT SETUP AND NUMERICS

For the case studies in Chapter 11 - 13, the same basic setup and fitting routine is used in all cases, and this is outlined
below. In general, this requires the steps outlined in Chpt. 9 and, for the case studies, configuration additionally requires
ePolyScat (ePS) [36, 37, 38, 39] ab initio radial matrix elements, and ADMs, in order to define test datasets (Sect. 10.3).
The 𝑁2 case study is use as an example in this case, and Sect. 10.4 illustrates both setting test data, and running fits.
Additionally, for the case studies herein, the setup routines are wrapped in a basic script, with configuration options for
each case included, this is illustrated in Sect. 10.4.4.
For the case studies, all the sample data is available from the ePSproc [34] Github repo, and the examples below include
steps for pulling the required data files. Note that further ePolyScat (ePS) [36, 37, 38, 39] datasets are available from
ePSdata [48], and data can be pulled using the python ePSdata interface.

10.1 Init and pulling data

Here the setup is mainly handled by some basic scripts, these follow the outline in the PEMtk documentation [20], see in
particular the intro to fitting.

# Pull data files as required from Github, note the path here is required

# *** Method using epsproc.util.io.getFilesFromGithub
# For pulling data from Github, a utility function is available
# This requires the repo subpath, and optionally branch
# The function will pull all files found in the repo path
from epsproc.util.io import getFilesFromGithub

# Set dataName (will be used as download subdir)
dataName = 'n2fitting'
# N2 matrix elements
fDictMatE, fAllMatE = getFilesFromGithub(subpath='data/photoionization/n2_multiorb',␣

↪dataName=dataName)
# N2 alignment data
fDictADM, fAllMatADM = getFilesFromGithub(subpath='data/alignment', dataName=dataName)

# *** Alternative method: supply URLs directly for file downloader
# E.g. Pull N2 data from ePSproc Github repo

# URLs for test ePSproc datasets - n2
# For more datasets use ePSdata, see https://epsproc.readthedocs.io/en/dev/demos/

↪ePSdata_download_demo_300720.html
urls = {'n2PU':"https://github.com/phockett/ePSproc/blob/master/data/photoionization/

↪n2_multiorb/n2_1pu_0.1-50.1eV_A2.inp.out",
'n2SU':"https://github.com/phockett/ePSproc/blob/master/data/photoionization/

↪n2_multiorb/n2_3sg_0.1-50.1eV_A2.inp.out", (continues on next page)
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'n2ADMs':"https://github.com/phockett/ePSproc/blob/master/data/alignment/N2_
↪ADM_VM_290816.mat",

'demoScript':"https://github.com/phockett/PEMtk/blob/master/demos/fitting/
↪setup_fit_demo.py"}

from epsproc.util.io import getFilesFromURLs
fList, fDict = getFilesFromURLs(urls, dataName=dataName)

Querying URL: https://api.github.com/repos/phockett/epsproc/contents/data/
↪photoionization/n2_multiorb

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪n2fitting/n2_1pu_0.1-50.1eV_A2.inp.out already exists

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪n2fitting/n2_3sg_0.1-50.1eV_A2.inp.out already exists

Querying URL: https://api.github.com/repos/phockett/epsproc/contents/data/alignment
Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/

↪n2fitting/N2_ADM_VM_290816.mat already exists
Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/

↪n2fitting/n2_1pu_0.1-50.1eV_A2.inp.out already exists
Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/

↪n2fitting/n2_3sg_0.1-50.1eV_A2.inp.out already exists
Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/

↪n2fitting/N2_ADM_VM_290816.mat already exists
Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/

↪n2fitting/setup_fit_demo.py already exists

10.2 Setup with options

Following the PEMtk documentation [20], the fitting workspace can be configured by setting:
1. A fitting basis set, either from computational matrix elements, from symmetry constraints, or manually. (See Chpt.

9 for more discussion.)
2. Data to fit. In the examples herein synthetic data will be created by adding noise to computational results.
3. ADMs to use for the fit. Again these may be from computational results, or set manually. If not specified these will

default to an isotropic distribution, which may be appropriate in some cases.
In the following subsections each aspect of the configuration is illustrated.

# Initiation - a PEMtk fitting class object

# Set data dir
dataPath = Path(Path.cwd(), dataName)

# Init class object
data = pemtkFit(fileBase = dataPath, verbose = 1)

# Read data files
data.scanFiles()

*** Job subset details
Key: subset

(continues on next page)
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No 'job' info set for self.data[subset].

*** Job orb6 details
Key: orb6
Dir /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/n2fitting,␣

↪1 file(s).
{ 'batch': 'ePS n2, batch n2_1pu_0.1-50.1eV, orbital A2',

'event': ' N2 A-state (1piu-1)',
'orbE': -17.09691397835426,
'orbLabel': '1piu-1'}

*** Job orb5 details
Key: orb5
Dir /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/n2fitting,␣

↪1 file(s).
{ 'batch': 'ePS n2, batch n2_3sg_0.1-50.1eV, orbital A2',

'event': ' N2 X-state (3sg-1)',
'orbE': -17.34181645456815,
'orbLabel': '3sg-1'}

10.2.1 Alignment distribution moments (ADMs)

The class wraps ep.setADMs() to set ADMs to the class data structure. This returns an isotropic distribution by default,
or values can be set explicitly from a list. Note: if this is not set, the default value will be used, which is likely not very
useful for the fit!
Values are set in self.data['ADM'], see Sect. 6.5 for more details on ADMs and molecular alignment. For the 𝑁2
example case, the alignment data is as per the original experimental demonstration of the bootstrap retrieval protocol [1],
and also available from the associated data repository [143].

# Default case - isotropic
data.setADMs()
# data.ADM['ADMX']
data.data['ADM']['ADM']

<xarray.DataArray 'ADM' (ADM: 1, t: 1)>
array([[1]])
Coordinates:
* ADM (ADM) MultiIndex
- K (ADM) int64 0
- Q (ADM) int64 0
- S (ADM) int64 0
* t (t) int64 0

Attributes:
dataType: ADM
long_name: Axis distribution moments
units: arb

Note: Full tabulations of the parameters, and some plots, available in HTML or notebook formats only.
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# Load time-dependent ADMs for N2 case
# These are in a Matlab/HDF5 file format
from scipy.io import loadmat
ADMdataFile = os.path.join(dataPath, 'N2_ADM_VM_290816.mat')
ADMs = loadmat(ADMdataFile)

# Set tOffset for calcs, 3.76ps!!!
# This is because this is 2-pulse case, and will set t=0 to 2nd pulse
# (and matches defn. in N2 experimental paper)
# Marceau, C. et al. (2017) ‘Molecular Frame Reconstruction Using Time-Domain␣

↪Photoionization Interferometry’, Physical Review Letters, 119(8), p. 083401.␣
↪Available at: https://doi.org/10.1103/PhysRevLett.119.083401.

tOffset = -3.76
ADMs['time'] = ADMs['time'] + tOffset

data.setADMs(ADMs = ADMs['ADM'], t=ADMs['time'].squeeze(), KQSLabels = ADMs['ADMlist
↪'], addS = True)

data.data['ADM']['ADM']

<xarray.DataArray 'ADM' (ADM: 4, t: 3691)>
array([[ 1.00000000e+00+0.00000000e+00j, 1.00000000e+00+0.00000000e+00j,

1.00000000e+00+0.00000000e+00j, ...,
1.00000000e+00+0.00000000e+00j, 1.00000000e+00+0.00000000e+00j,
1.00000000e+00+0.00000000e+00j],

[-2.26243113e-17+0.00000000e+00j, 2.43430608e-08+1.04125246e-20j,
9.80188266e-08+6.89166168e-20j, ...,
1.05433798e-01-1.62495135e-18j, 1.05433798e-01-1.62495135e-18j,
1.05433798e-01-1.62495135e-18j],

[ 1.55724057e-16+0.00000000e+00j, -3.37021111e-10-6.81416260e-20j,
1.95424253e-10-3.10513374e-19j, ...,
8.39913132e-02-5.12795441e-17j, 8.39913132e-02-5.12795441e-17j,
8.39913132e-02-5.12795441e-17j],

[-7.68430227e-16+0.00000000e+00j, -1.40177466e-11+1.04987400e-19j,
6.33419102e-10+1.74747003e-18j, ...,
3.78131657e-02+4.01318983e-16j, 3.78131657e-02+4.01318983e-16j,
3.78131657e-02+4.01318983e-16j]])

Coordinates:
* ADM (ADM) MultiIndex
- K (ADM) int64 0 2 4 6
- Q (ADM) int64 0 0 0 0
- S (ADM) int64 0 0 0 0
* t (t) float64 -3.76 -3.76 -3.76 -3.759 -3.759 ... 10.1 10.1 10.1 10.1

Attributes:
dataType: ADM
long_name: Axis distribution moments
units: arb

# Manual plot with hvplot for full control and interactive plot
# NOTE: HTML version only.
key = 'ADM'
dataType='ADM'
data.data[key][dataType].unstack().real.hvplot.line(x='t').overlay(['K','Q','S'])

:NdOverlay [S,Q,K]
:Curve [t] (ADM)
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# A basic self.ADMplot routine is also available
%matplotlib inline
data.ADMplot(keys = 'ADM')

Dataset: ADM, ADM

10.2.2 Polarisation geometry/ies

This wraps ep.setPolGeoms. This defaults to (x,y,z) polarization geometries. Values are set in self.data['pol'].
Note: if this is not set, the default value will be used, which is likely not very useful for the fit!

data.setPolGeoms()
data.data['pol']['pol']

<xarray.DataArray (Labels: 3)>
array([quaternion(1, -0, 0, 0),

quaternion(0.707106781186548, -0, 0.707106781186547, 0),
quaternion(0.5, -0.5, 0.5, 0.5)], dtype=quaternion)

Coordinates:
Euler (Labels) object (0.0, 0.0, 0.0) ... (1.5707963267948966, 1.57079...

* Labels (Labels) <U32 'z' 'x' 'y'
Attributes:

dataType: Euler
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10.2.3 Subselect data

Currently handled in the class by setting self.selOpts, this allows for simple reuse of settings as required.
Subselected data is set to self.data['subset'][dataType] by default (equivalently self.data[self.
subKey][dataType]), and is the data the fitting routine will use.

# Settings for type subselection are in selOpts[dataType]

# E.g. Matrix element sub-selection
data.selOpts['matE'] = {'thres': 0.01, 'inds': {'Type':'L', 'Eke':1.1}}
data.setSubset(dataKey = 'orb5', dataType = 'matE') # Subselect from 'orb5' dataset,␣

↪matrix elements

# And for the polarisation geometries...
data.selOpts['pol'] = {'inds': {'Labels': 'z'}}
data.setSubset(dataKey = 'pol', dataType = 'pol')

# And for the ADMs...
data.selOpts['ADM'] = {} #{'thres': 0.01, 'inds': {'Type':'L', 'Eke':1.1}}
data.setSubset(dataKey = 'ADM', dataType = 'ADM', sliceParams = {'t':[4, 5, 4]})

Subselected from dataset 'orb5', dataType 'matE': 36 from 11016 points (0.33%)
Subselected from dataset 'pol', dataType 'pol': 1 from 3 points (33.33%)
Subselected from dataset 'ADM', dataType 'ADM': 52 from 14764 points (0.35%)

# Note that the class uses data.subKey to reference the correct data internally
print(f'Data dict key: {data.subKey}')
print(f'Data dict contents: {data.data[data.subKey].keys()}')

Data dict key: subset
Data dict contents: dict_keys(['matE', 'pol', 'ADM'])

# Check subselected ADMs by plotting vs. full ADM data
# Plot from Xarray vs. full dataset
data.data['subset']['ADM'].real.squeeze().plot.line(x='t', marker = 'x', linestyle=

↪'dashed');
data.data['ADM']['ADM'].real.squeeze().plot.line(x='t');
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10.3 Compute AF-𝛽𝐿𝑀 and simulate data

With all the components set, some observables can be calculated. For testing, this will also be used to simulate an
experimental trace (with noise added).
For both basic computation, and fitting, the class method self.afblmMatEfit() can be used. This essentially
wraps the main AF computational routine, epsproc.afblmXprod(), to compute AF-𝛽𝐿𝑀s (for more details, see
the ePSproc method development docs and API docs).
If called without reference data, the method returns computed AF-𝛽𝐿𝑀s based on the input subsets already created, and
also a set of (product) basis functions generated - as illustrated in Sect. 6.3, these can be examined to get a feel for the
sensitivity of the geometric part of the problem, and will also be used as a basis in the fitting routine to limit repetitive
computations.

10.3.1 Compute AF-𝛽𝐿𝑀s

# Compute with class method
# This uses all data as set to self.data['subset']
BetaNormX, basis = data.afblmMatEfit()
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10.3.2 AF-𝛽𝐿𝑀s

The returned objects contain the 𝛽𝐿𝑀 parameters as an Xarray…

# Line-plot with Xarray/Matplotlib
# Note there is no filtering here, so this includes some invalid and null terms
BetaNormX.sel(Labels='A').real.squeeze().plot.line(x='t');

… and the basis sets as a dictionary. (See Sect. 6.3 for more details on the basis sets.)

basis.keys()

dict_keys(['BLMtableResort', 'polProd', 'phaseConvention', 'BLMRenorm'])

10.4 Fitting the data: configuration

As discussed in Chpt. 7, general non-linear fitting approaches are used for the bootstrap retrieval protocol. These are
wrapped in the Photoelectron Metrology Toolkit [5] for radial matrix elements retrieval problems, as shown below. (And,
as discussed in Sect. 5.3, make use of the lmfit library [66, 67] and Scipy [52] base routines.)
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10.4.1 Set the data to fit

To use the values calculated above as the test data, it currently needs to be set as self.
data['subset']['AFBLM'] for fitting.

# Set computed results to main data structure

# Method 1: Set directly by manual assignment
# data.data['subset']['AFBLM'] = BetaNormX

# Method 2: Set to main data structure and subset using methods as above
# Set simulated data to master structure as "sim"
data.setData('sim', BetaNormX)
# Set to 'subset' to use for fitting.
data.setSubset('sim','AFBLM')

Subselected from dataset 'sim', dataType 'AFBLM': 52 from 52 points (100.00%)

# Set basis functions
data.basis = basis

10.4.2 Adding noise

For a more realistic test of the bootstrap retrieval protocol, noise or other artifacts can be added to the data. Below is a
routine for adding random (Gaussian) noise.

# Add noise with np.random.normal
# https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html
import numpy as np
mu, sigma = 0, 0.05 # Up to approx 10% noise (+/- 0.05)
# creating a noise with the same dimension as the dataset (2,2)
noise = np.random.normal(mu, sigma,

[data.data['subset']['AFBLM'].t.size,
data.data['subset']['AFBLM'].l.size])

# data.BLMfitPlot()

# Set noise in Xarray & scale by l
import xarray as xr
noiseXR = xr.ones_like(data.data['subset']['AFBLM']) * noise
# Scale by L? This prevents too much high-order noise
noiseXR = noiseXR.where(noiseXR.l<1, noiseXR/(noiseXR.l))
# Update data for fitting
data.data['subset']['AFBLM'] = data.data['subset']['AFBLM'] + noiseXR
# Remove non-zero m terms?
# This removes additional noise-only channels
data.data['subset']['AFBLM'] = data.data['subset']['AFBLM'].where(data.data['subset'][

↪'AFBLM'].m == 0, 0)

# The BLMfitPlot() routine can be used to plot data and fit outputs
data.BLMfitPlot()

Dataset: subset, AFBLM
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10.4.3 Setting up the fit parameters

As detailed in Chpt. 9, fitting requires a basis set and fit parameters. In this case, we can work from the existing matrix
elements (as used for simulating data above) to speed up parameter creation, although in practice this may need to be
approached ab initio or via symmetry - nonetheless, the method will be similar.

# Set matrix elements from ab initio results
data.setMatEFit(data.data['subset']['matE'])

This sets self.params from the matrix elements, which are a set of (real) parameters for lmfit, as a Parameters object.
Note that:

• The input matrix elements are converted to magnitude-phase form, hence there are twice the number as the input
array, and labelled m or p accordingly, along with a name based on the full set of QNs/indexes set.

• One phase is set to vary=False, which defines a reference phase. This defaults to the first phase item.
• Min and max values are defined, by default the ranges are 1𝑒−4 <mag< 5, −𝜋 <phase< 𝜋.
• Relationships between the parameters are set by default, but can be set manually, or pass paramsCons=None
to skip.

For further details, including modification of parameter settings, see Sect. 9.3.4 and the PEMtk documentation [20].
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10.4.4 Quick setup with script

The steps demonstrated above are also wrapped in a helper script, although some steps may need to be re-run to change
selection properties or ranges. For the case studies, there are specific details for each configured in the script, including
source data locations and the selection criteria as used in each demonstration.

# Run general config script with dataPath set above
%run {dataPath/"setup_fit_demo.py"} -d {dataPath}

10.5 Fitting the data: Running fits

10.5.1 Single fit

With the parameters and data set, just call self.fit()! For more control, options to the lmfit library [66, 67]
minimizer function can be set. Statistics and outputs are also handled by the lmfit library [66, 67], which includes
uncertainty estimates and correlations in the fitted parameters.

# Run a fit
# data.randomizeParams() # Randomize input parameters if desired

# For method testing using known initial params is also␣
↪useful

# Run fit with defaults settings
data.fit()

# Additional keyword options can be pass, these are passed to the fitting routine.
# Args are passed to the lmfit minimizer, see https://lmfit.github.io/lmfit-py/

↪fitting.html
# E.g. for scipy Least Squares, options can be found at
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.

↪html#scipy.optimize.least_squares
# For example, pass convergence tolerances
# data.fit(ftol=1e-10, xtol=1e-10)

# Check fit outputs - self.result shows results from the last fit
data.result

# Fit data is also set to the master data structure with an integer key
data.data.keys()

dict_keys(['subset', 'orb6', 'orb5', 'ADM', 'pol', 'sim', 0])

# Plot results with data overlay
# data.BLMfitPlot(backend='hv') # Set backend='hv' for interactive plots
data.BLMfitPlot()

Dataset: subset, AFBLM
Dataset: 0, AFBLM
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10.5.2 Extended execution methods, including parallel and batched execution

See the PEMtk documentation [20] for details, particularly the batch runs demo page.
(1) serial execution
Either:

• Manually with a loop.
• With self.multiFit() method, although this is optimised for parallel execution (see below).

# Basic serial example with a loop
import time

start = time.time()

# Maual execution
for n in range(0,10):

data.randomizeParams()
data.fit()

end = time.time()
print((end - start)/60)

# Or run with self.multiFit(parallel = False)
# data.multiFit(nRange = [0,10], parallel = False)
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0.953699239095052

# There are now 10 more fit results
data.data.keys()

dict_keys(['subset', 'orb6', 'orb5', 'ADM', 'pol', 'sim', 0, 1, 2, 3, 4, 5, 6, 7,␣
↪8, 9, 10])

(b) parallel execution
A basic parallel fitting routine is implemented via the self.multiFit() method. This currently uses the xyzpy
library [68] for quick parallelization, although there is some additional setup overhead in the currently implementation
due to class init per fit batch. The default settings aims to set ~90% CPU usage, based on core-count.

# Multifit wrapper with range of fits specified
# Set 'num_workers' to override the default (~90% of available cores).
data.multiFit(nRange = [0,10], num_workers=20)

(c) Dump data
Various options are available. The most complete is to use Pickle (default case), which dumps the entire self.data
structure to file, although this is not suggested for archival use. For details see the ePSproc documentation [35], particularly
the data structures demo page. For some data types HDF5 routines are available, and are demonstrated for post-processed
fit data in the case studies (Chapt. 11 - Chapt. 13).

outStem = 'dataDump_N2' # Set for file save later
# Minimal case - timestamped filename
# data.writeFitData()

# Use 'fName' to supply a filename
# data.writeFitData(fName='N2_datadump')

# Use 'outStem' to define a filename which will be appended with a timestamp
# Set dataPath if desired, otherwise will use working dir
data.writeFitData(dataPath = dataPath, outStem=outStem)

PosixPath('/home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪n2fitting/dataDump_N2_071223_11-19-40.pickle')

10.5.3 Batch fit with sampling options

From the basic methods above, more sophisticated fitting strategies can be built. For example, the cell below implements
batched fitting with Poission sampling of the data (for statistical bootstrapping).

# Batch fit with data weighting example
batchSize = 50

data.data['weights'] = {} # Use to log ref weights, will be overwritten otherwise

for n in np.arange(0,100,batchSize):
print(f'Running batch [{n},{n+batchSize-1}]')

(continues on next page)
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(continued from previous page)

# Reset weights
data.setWeights(wConfig = 'poission', keyExpt='sim')
data.setSubset('sim','weights') # Set to 'subset' to use for fitting.

data.data['weights'][n] = data.data['sim']['weights'].copy()

# Run fit batch
data.multiFit(nRange = [n,n+batchSize-1], num_workers=20)

# Checkpoint - dump data to file
data.writeFitData(outStem=outStem)
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CHAPTER

ELEVEN

CASE STUDY: GENERALISED BOOTSTRAPPING FOR A
HOMONUCLEAR DIATOMIC SCATTERING SYSTEM, 𝑁2 (𝐷∞𝐻)

In this chapter, the full code and analysis details of the case study for 𝑁2 are given, including obtaining required data,
running fits and analysis routines. For more details on the routines, see the PEMtk documentation [20]; for the analysis
see particularly the fit fidelity and analysis page, and molecular frame analysis data processing page (full analysis for Ref.
[3], illustrating the 𝑁2 case).

11.1 General setup

In the following code cells (see source notebooks for full details) the general setup routines (as per the outline in Chpt.
10 are executed via a configuration script with presets for the case studies herein.
Additionally, the routines will either run fits, or load existing data if available. Since fitting can be computationally
demanding, it is, in general, recommended to approach large fitting problems carefully.

General note on fitting
Computational outputs in this chapter are significantly truncated in the PDF, and some simplified plots are used; see
source notebooks (via Quantum Metrology Vol. 3 (Github repo)) or Quantum Metrology Vol. 3 (HTML version) for
full details.

# Configure settings for case study

# Set case study by name
fitSystem='N2'
fitStem=f"fit_withNoise_orb5"

# Add noise?
addNoise = 'y'
mu, sigma = 0, 0.05 # Up to approx 10% noise (+/- 0.05)

# Batching - number of fits to run between data dumps
batchSize = 10

# Total fits to run
nMax = 10
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# Pull data from web (N2 case)

from epsproc.util.io import getFilesFromGithub

# Set dataName (will be used as download subdir)
dataName = 'n2fitting'
# N2 matrix elements
fDictMatE, fAllMatE = getFilesFromGithub(subpath='data/photoionization/n2_multiorb',␣

↪dataName=dataName)
# N2 alignment data
fDictADM, fAllMatADM = getFilesFromGithub(subpath='data/alignment', dataName=dataName)

# Fitting setup including data generation and parameter creation

# Set datapath,
dataPath = Path(Path.cwd(),dataName)

# Run general config script with dataPath set above
%run "../scripts/setup_fit_case-studies_270723.py" -d {dataPath} -c {fitSystem} -n

↪{addNoise} --sigma {sigma}

11.2 Load existing fit data or run fits

Note that running fits may be quite time-consuming and computationally intensive, depending on the size of the size of
the problem. The default case here will run a small batch for testing if there is no existing data found on the dataPath,
otherwise the data is loaded for analysis.

# Look for existing Pickle files on path?
# dataFiles = list(dataPath.expanduser().glob('*.pickle'))
dataFiles = [Path(dataPath.expanduser(), 'N2_1199_fit_withNoise_orb5_280723_11-39-26.

↪pickle')] # Set reference dataset(s)

if not dataFiles:
print("No data found, executing minimal fitting run...")

# Run fit batch - single
# data.multiFit(nRange = [n,n+batchSize-1], num_workers=batchSize)

# Run fit batches with checkpoint files
for n in np.arange(0,nMax,batchSize):

print(f'*** Running batch [{n},{n+batchSize-1}], {dt.now().strftime("%d%m%y_
↪%H-%M-%S")}')

# Run fit batch
data.multiFit(nRange = [n,n+batchSize-1], num_workers=batchSize)

# Dump data so far
data.writeFitData(outStem=f"{fitSystem}_{n+batchSize-1}_{fitStem}")

print(f'Finished batch [{n},{n+batchSize-1}], {dt.now().strftime("%d%m%y_%H-
↪%M-%S")}')

print(f'Written to file {fitSystem}_{n+batchSize-1}_{fitStem}')

(continues on next page)
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(continued from previous page)

else:
dataFileIn = dataFiles[-1] # Add index to select file, although loadFitData␣

↪will concat multiple files
# Note that concat currently only works for fixed␣

↪batch sizes however.
print(f"Set dataFiles: {dataFileIn}")
data.loadFitData(fList=dataFileIn, dataPath=dataPath) #.expanduser())

data.BLMfitPlot(keys=['subset','sim'])

Set dataFiles: /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪n2fitting/N2_1199_fit_withNoise_orb5_280723_11-39-26.pickle

Read data from /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪n2fitting/N2_1199_fit_withNoise_orb5_280723_11-39-26.pickle with pickle.

Dataset: subset, AFBLM
Dataset: sim, AFBLM

# Check ADMs
# Basic plotter
data.ADMplot(keys = 'subset')

Dataset: subset, ADM
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# Fits appear as integer indexed items in the main data structure.
data.data.keys()

11.3 Post-processing and data overview

Post-processing involves aggregation of all the fit run results into a single data structure. This can then be analysed
statistically and examined for for best-fit results. In the statistical sense, this is essentailly a search for candidate radial
matrix elements, based on the assumption that some of the minima found in the 𝜒2 hyperspace will be the true results.
Even if a clear global minima does not exist, searching for candidate radial matrix elements sets based on clustering of
results and multiple local minima is still expected to lead to viable candidates provided that the information content of the
dataset is sufficient. However, as discussed elsewhere (see Sect. 7.2), in some cases this may not be the case, and other
limitations may apply (e.g. certain parameters may be undefined), or additional data required for unique determination
of the radial matrix elements.
For more details on the analysis routines, see the PEMtk documentation [20], particularly the fit fidelity and analysis page,
and molecular frame analysis data processing page (full analysis for Ref. [3], illustrating the 𝑁2 case).

# General stats & post-processing to data tables
data.analyseFits()

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

(continues on next page)
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(continued from previous page)

{ 'Fits': 1170,
'Minima': {'chisqr': 0.07137430989515783, 'redchi': 0.000479022214061462},
'Stats': { 'chisqr': min 0.071

mean 0.084
median 0.071
max 2.594
std 0.089
var 0.008
Name: chisqr, dtype: float64,

'redchi': min 4.790e-04
mean 5.652e-04
median 4.790e-04
max 1.741e-02
std 6.002e-04
var 3.602e-07
Name: redchi, dtype: float64},

'Success': 1169}

# The BLMsetPlot routine will output aggregate fit results.
# Here the spread can be taken as a general indication of the uncertainty of
# the fitting, and indicate whether the fit is well-characterised/the information
# content of the data is sufficient.
data.BLMsetPlot(xDim = 't', thres=1e-6) # With xDim and thres set, for more control␣

↪over outputs

# Glue plot for later
glue("N2-fitResultsBLM",data.data['plots']['BLMsetPlot'])

Fig. 11.1: Fit overview plot - 𝛽𝐿,𝑀(𝑡). Here dashed lines with ‘+’ markers indicates the input data, and bands indicate the
mean fit results, where the width is the standard deviation in the fit model results. (See the PEMtk documentation [20]
for details, particularly the analysis routines page.)
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# Write aggregate datasets to HDF5 format
# This is more robust than Pickled data, but PEMtk currently only support output for␣

↪aggregate (post-processed) fit data.

data.processedToHDF5(dataPath = dataPath, outStem = dataFileIn.name, timeStamp=False)

Dumped self.data[fits][dfLong] to /home/jovyan/jake-home/buildTmp/_latest_build/
↪pdf/doc-source/part2/n2fitting/N2_1199_fit_withNoise_orb5_280723_11-39-26.pickle_
↪dfLong.pdHDF with Pandas .to_hdf() routine.

Dumped data to /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪n2fitting/N2_1199_fit_withNoise_orb5_280723_11-39-26.pickle_dfLong.pdHDF with␣
↪pdHDF.

Dumped self.data[fits][AFxr] to /home/jovyan/jake-home/buildTmp/_latest_build/pdf/
↪doc-source/part2/n2fitting/N2_1199_fit_withNoise_orb5_280723_11-39-26.pickle_
↪AFxr.pdHDF with Pandas .to_hdf() routine.

Dumped data to /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪n2fitting/N2_1199_fit_withNoise_orb5_280723_11-39-26.pickle_AFxr.pdHDF with␣
↪pdHDF.

# Histogram fit results (reduced chi^2 vs. fit index)
# This may be quite slow for large datasets, setting limited ranges may help

# Use default auto binning
# data.fitHist()

# Example with range set
data.fitHist(thres=1.5e-3, bins=100)

# Glue plot for later
glue("N2-fitHist",data.data['plots']['fitHistPlot'])

Here, Fig. 11.1 shows an overview of the results compared with the input data, and Fig. 11.2 an overview of 𝜒2 vs. fit
index. Bands in the 𝜒2 dimension can indicate groupings (local minima) are consistently found. Assuming each grouping
is a viable fit candidate parameter set, these can then be explored in further detail.

11.4 Data exploration

The general aim in this procedure is to ascertain whether there was a good spread of parameters explored, and a single
(or few sets) of best-fit results. There are a few procedures and helper methods for this…

11.4.1 View results

Single results sets can be viewed in the main data structure, indexed by integers.

# Check keys
fitNumber = 2
data.data[fitNumber].keys()

dict_keys(['AFBLM', 'residual', 'results'])
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Fig. 11.2: Fit overview plot - 𝜒2 vs. fit index. Here bands indicate groupings (local minima) are consistently found.

Here results is an lmFit object, which includes final fit results and information, and AFBLM contains the model (fit)
output (i.e. resultant AF-𝛽𝐿𝑀 values).
An example is shown below. Of particular note here is which parameters have vary=True - these are included in the
fitting - and if there is a column expression, which indicates any parameters defined to have specific relationships
(see Chpt. 9). Any correlations found during fitting are also shown, which can also indicate parameters which are related
(even if this is not predefined or known a priori).

# Show some results
data.data[fitNumber]['results']

11.5 Classify candidate sets

To probe the minima found, the classifyFitsmethod can be used. This bins results into “candidate” groups, which
can then be examined in detail.

# Run with defaults
# data.classifyFits()

# For more control, pass bins
# Here the minima is set at one end, and a %age range used for bins
minVal = data.fitsSummary['Stats']['redchi']['min']
binRangePC = 1e-8
data.classifyFits(bins = [minVal, minVal + binRangePC*minVal , 20])
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success chisqr redchi
count unique top freq count unique top freq count unique top freq

redchiGroup
A 31 1 True 31 31.0 31.0 0.071 1.0 31.0 31.0 4.790e-04 1.0
B 18 1 True 18 18.0 18.0 0.071 1.0 18.0 18.0 4.790e-04 1.0
C 25 1 True 25 25.0 25.0 0.071 1.0 25.0 25.0 4.790e-04 1.0
D 25 1 True 25 25.0 25.0 0.071 1.0 25.0 25.0 4.790e-04 1.0
E 25 1 True 25 25.0 25.0 0.071 1.0 25.0 25.0 4.790e-04 1.0
F 21 1 True 21 21.0 21.0 0.071 1.0 21.0 21.0 4.790e-04 1.0
G 17 1 True 17 17.0 17.0 0.071 1.0 17.0 17.0 4.790e-04 1.0
H 19 1 True 19 19.0 19.0 0.071 1.0 19.0 19.0 4.790e-04 1.0
I 27 1 True 27 27.0 27.0 0.071 1.0 27.0 27.0 4.790e-04 1.0
J 21 1 True 21 21.0 21.0 0.071 1.0 21.0 21.0 4.790e-04 1.0
K 27 1 True 27 27.0 27.0 0.071 1.0 27.0 27.0 4.790e-04 1.0
L 22 1 True 22 22.0 22.0 0.071 1.0 22.0 22.0 4.790e-04 1.0
M 18 1 True 18 18.0 18.0 0.071 1.0 18.0 18.0 4.790e-04 1.0
N 18 1 True 18 18.0 18.0 0.071 1.0 18.0 18.0 4.790e-04 1.0
O 22 1 True 22 22.0 22.0 0.071 1.0 22.0 22.0 4.790e-04 1.0
P 18 1 True 18 18.0 18.0 0.071 1.0 18.0 18.0 4.790e-04 1.0
Q 16 1 True 16 16.0 16.0 0.071 1.0 16.0 16.0 4.790e-04 1.0
R 20 1 True 20 20.0 20.0 0.071 1.0 20.0 20.0 4.790e-04 1.0
S 23 1 True 23 23.0 23.0 0.071 1.0 23.0 23.0 4.790e-04 1.0

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.
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11.6 Explore candidate result sets

Drill-down on a candidate set of results, and examine values and spreads. For more details see PEMtk documentation
[20], especially the analysis routines page. (See also Sect. 5.3 for details on the plotting libaries implemented here.)

11.6.1 Raw results

Plot spreads in magnitude and phase parameters. Statistical plots are available for Seaborn and Holoviews backends, with
some slightly different options.

# From the candidates, select a group for analysis
selGroup = 'A'

# paramPlot can be used to check the spread on each parameter.
# Plots use Seaborn or Holoviews/Bokeh
# Colour-mapping is controlled by the 'hue' paramter, additionally pass hRound for␣

↪sig. fig control.
# The remap setting allows for short-hand labels as set in data.lmmu

paramType = 'm' # Set for (m)agnitude or (p)hase parameters
hRound = 14 # Set for cmapping, default may be too small (leads to all grey cmap on␣

↪points)

data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',

(continues on next page)
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(continued from previous page)

backend=paramPlotBackend, hvType='violin',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7f86241b59f0>

paramType = 'p' # Set for (m)agnitude or (p)hase parameters
data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',␣

↪backend=paramPlotBackend, hvType='violin',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7f862442f6d0>
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11.6.2 Phases, phase shifts & corrections

Depending on how the fit was configured, phases may be defined in different ways. To set the phases relative to a speific
parameter, and wrap to a specified range, use the phaseCorrection() method. This defaults to using the first
parameter as a reference phase, and wraps to −𝜋 ∶ 𝜋. The phase-corrected values are output to a new Type, ‘pc’, and a
set of normalised magnitudes to ‘n’. Additional settings can be passed for more control, as shown below.

# Run phase correction routine
# Set absFlag=True for unsigned phases (mapped to 0:pi)
# Set useRef=False to set ref phase as 0, otherwise the reference value is set.
phaseCorrParams={'absFlag':True, 'useRef':False}
data.phaseCorrection(**phaseCorrParams)

Examine new data types…

paramType = 'n'
data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',

backend=paramPlotBackend, hvType='violin', kind='box',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.
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<seaborn.axisgrid.FacetGrid at 0x7f8624128a60>

paramType = 'pc'
data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',

backend=paramPlotBackend, hvType='violin', kind='box',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7f8604739b10>
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11.7 Parameter estimation & fidelity

For case studies, the fit results can be directly compared to the known input parameters. This should give a feel for how
well the data defines the matrix elements (parameters) in this case. In general, probing the correlations and spread of
results, and comparing to other (unfitted) results is required to estimate fidelity, see Quantum Metrology Vols. 1 & 2 [4,
9] for further discussion.

11.7.1 Best values and statistics

To get a final parameter set and associated statistics, based on a subset of the fit results, the paramsReport()method
is available. If reference data is available, as for the case studies herein, the paramsCompare() method can also be
used to compare with the reference case.

# Parameter summary
data.paramsReport(inds = {'redchiGroup':selGroup})

# Parameter comparison
# Note this uses phaseCorrParams as set previously for consistency
data.paramsCompare(phaseCorrParams=phaseCorrParams)
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# Display above results With column name remapping to (l,m) labels only

# With Pandas functionality
data.paramsSummaryComp.rename(columns=data.lmmu['lmMap'])

# With utility method
# summaryRenamed = pemtk.fit._util.renameParams(data.paramsSummaryComp, data.lmmu[

↪'lmMap'])
# summaryRenamed

Param 1,1 1,-1 3,1 3,-1 1,0 3,0
Type Source dType
m mean num 1.815e+00 1.815e+00 8.959e-01 8.959e-01 2.473e+00 1.361e+00

ref num 1.785e+00 1.785e+00 8.029e-01 8.029e-01 2.686e+00 1.109e+00
diff % 1.662e+00 1.662e+00 1.038e+01 1.038e+01 8.617e+00 1.851e+01

num 3.016e-02 3.016e-02 9.304e-02 9.304e-02 -2.131e-01 2.520e-01
std % 1.021e-03 1.021e-03 4.377e-03 4.377e-03 2.025e-03 6.889e-03

num 1.853e-05 1.853e-05 3.921e-05 3.921e-05 5.007e-05 9.377e-05
diff/std % 1.628e+05 1.628e+05 2.373e+05 2.373e+05 4.256e+05 2.688e+05

n mean num 4.514e-01 4.514e-01 2.229e-01 2.229e-01 6.152e-01 3.386e-01
ref num 4.447e-01 4.447e-01 2.001e-01 2.001e-01 6.693e-01 2.764e-01
diff % 1.490e+00 1.490e+00 1.023e+01 1.023e+01 8.807e+00 1.837e+01

num 6.725e-03 6.725e-03 2.279e-02 2.279e-02 -5.418e-02 6.221e-02
std % 1.023e-03 1.023e-03 4.375e-03 4.375e-03 2.021e-03 6.892e-03

num 4.618e-06 4.618e-06 9.750e-06 9.750e-06 1.243e-05 2.334e-05
diff/std % 1.456e+05 1.456e+05 2.338e+05 2.338e+05 4.357e+05 2.666e+05

p mean num -8.610e-01 -8.610e-01 1.230e-01 1.230e-01 2.025e+00 -6.796e-01
ref num -8.610e-01 -8.610e-01 -3.120e+00 -3.120e+00 2.611e+00 -7.868e-02
diff % 0.000e+00 0.000e+00 2.637e+03 2.637e+03 2.896e+01 8.842e+01

num 0.000e+00 0.000e+00 3.243e+00 3.243e+00 -5.864e-01 -6.009e-01
std % 0.000e+00 0.000e+00 1.240e+03 1.240e+03 1.957e+01 4.139e+01

num 0.000e+00 0.000e+00 1.525e+00 1.525e+00 3.963e-01 2.813e-01
diff/std % NaN NaN 2.126e+02 2.126e+02 1.480e+02 2.136e+02

pc mean num 0.000e+00 0.000e+00 1.794e+00 1.794e+00 2.675e+00 3.309e-01
ref num 0.000e+00 0.000e+00 2.259e+00 2.259e+00 2.811e+00 7.824e-01
diff % NaN NaN 2.591e+01 2.591e+01 5.067e+00 1.364e+02

num 0.000e+00 0.000e+00 -4.649e-01 -4.649e-01 -1.356e-01 -4.515e-01
std % NaN NaN 1.074e-03 1.074e-03 1.812e-03 9.418e-03

num 0.000e+00 0.000e+00 1.928e-05 1.928e-05 4.848e-05 3.116e-05
diff/std % NaN NaN 2.412e+06 2.412e+06 2.796e+05 1.449e+06
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11.8 Using the reconstructed matrix elements

The results tables are accessible directly, and there are also methods to reformat the best fit results for use in further
calculations.

# self.paramsSummary contains the results above as Pandas Dataframe, usual Pandas␣
↪methods can be applied.

data.paramsSummary['data'].describe()

Param PU_SG_PU_1_1_n1_1 PU_SG_PU_1_n1_1_1 PU_SG_PU_3_1_n1_1 PU_SG_PU_3_n1_1_1 SU_SG_SU_1_0_0_1 SU_SG_SU_3_0_0_1
count 124.000 124.000 124.000 124.000 124.000 124.000
mean 0.351 0.351 0.759 0.759 1.947 0.338
std 0.972 0.972 1.008 1.008 0.831 0.738
min -0.861 -0.861 -2.656 -2.656 0.615 -1.192
25% -0.215 -0.215 0.223 0.223 1.514 0.116
50% 0.226 0.226 0.896 0.896 2.473 0.335
75% 0.792 0.792 1.149 1.149 2.675 0.594
max 1.815 1.815 1.794 1.794 2.747 1.361

# To set matrix elements from aggregate fit results, use `seetAggMatE` for Pandas
data.setAggMatE(simpleForm = True)
data.data['agg']['matEpd']

Set reformatted aggregate data to self.data[agg][matEpd].

Type m n p pc comp compC labels
Cont l m mu
PU 1 -1 1 1.815 0.451 -0.861 0.000 1.183-1.377j 0.451+0.000j 1,-1

1 -1 1.815 0.451 -0.861 0.000 1.183-1.377j 0.451+0.000j 1,1
3 -1 1 0.896 0.223 0.123 1.794 0.889+0.110j -0.049+0.217j 3,-1

1 -1 0.896 0.223 0.123 1.794 0.889+0.110j -0.049+0.217j 3,1
SU 1 0 0 2.473 0.615 2.025 2.675 -1.085+2.222j -0.550+0.277j 1,0

3 0 0 1.361 0.339 -0.680 0.331 1.059-0.855j 0.320+0.110j 3,0

# To set matrix elements from aggregate fit results, use `aggToXR` for Xarray
# data.aggToXR(refKey = 'orb5', returnType = 'ds', conformDims=True) # use full ref␣

↪dataset
data.aggToXR(refKey = 'subset', returnType = 'ds', conformDims=True) # Subselected␣

↪matE

Added dim Total
Added dim Targ
Added dim Total
Added dim Targ
Set XR dataset for self.data['agg']['matE']
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11.8.1 Density matrices

New (experimental) code for density matrix plots and comparison. See Sect. 6.4 for discussion. Code adapted from
the PEMtk documentation [20] MF reconstruction page, original analysis for Ref. [3], illustrating the 𝑁2 case. If the
reconstruction is good, the differences (fidelity) should be on the order of the experimental noise level/reconstruction
uncertainty, around 10% in the case studies herein; in general the values and patterns of the matrices can also indicate
aspects of the retrieval that worked well, or areas where values are poorly defined/recovered from the given dataset.

11.8.2 Plot MF PADs

Routines below adapted from the PEMtk documentation [20] MF reconstruction data processing page (original analysis
page for Ref. [3], illustrating the 𝑁2 case). The routines include calls to self.mfpadNumeric() for numerical
expansion of the MF-PADs, and self.padPlot() for plotting. Results are illustrated for the retrieved and reference
cases in Fig. 11.4 and Fig. 11.5 respectively, and the differential results (reference minus fitted results) in Fig. 11.6.
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Fig. 11.3: Density matrix comparison - rows show (a) reference case (with signs of phases removed), (b) reconstructed
case, (c) differences. Columns are (left) imaginary component, (right) real component. If the reconstruction is good, the
differences (fidelity) should be on the order of the experimental noise level/reconstruction uncertainty, around 10% in the
case studies herein.11.8. Using the reconstructed matrix elements 149
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Fig. 11.4: MF-PADs computed from retrieved matrix elements for (𝑥, 𝑦, 𝑧, 𝑑) polarization geometries, where 𝑑 is the
“diagonal” case with the polarization axis as 45 degrees to the 𝑧-axis.

Fig. 11.5: MF-PADs computed from reference ab initio matrix elements for (𝑥, 𝑦, 𝑧, 𝑑) polarization geometries, where 𝑑
is the “diagonal” case with the polarization axis as 45 degrees to the 𝑧-axis.

Fig. 11.6: MF-PADs differences between retrieved and reference cases for (𝑥, 𝑦, 𝑧, 𝑑) polarization geometries, where 𝑑
is the “diagonal” case with the polarization axis as 45 degrees to the 𝑧-axis. Note diffs are normalised to emphasize the
shape, but not mangnitudes, of the differences - see the density matrix comparisons for a more rigourous fidelity analysis.
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CHAPTER

TWELVE

CASE STUDY: GENERALISED BOOTSTRAPPING FOR A LINEAR
HETERONUCLEAR SCATTERING SYSTEM, 𝑂𝐶𝑆 (𝐶∞𝑉 )

In this chapter, the full code and analysis details of the case study for 𝑂𝐶𝑆 are given, including obtaining required data,
running fits and analysis routines. For more details on the routines, see the PEMtk documentation [20]; for the analysis
see particularly the fit fidelity and analysis page, and molecular frame analysis data processing page (full analysis for Ref.
[3], illustrating the 𝑁2 case).

12.1 General setup

In the following code cells (see source notebooks for full details) the general setup routines (as per the outline in Chpt.
10 are executed via a configuration script with presets for the case studies herein.
Additionally, the routines will either run fits, or load existing data if available. Since fitting can be computationally
demanding, it is, in general, recommended to approach large fitting problems carefully.

General note on fitting
Computational outputs in this chapter are significantly truncated in the PDF, and some simplified plots are used; see
source notebooks (via Quantum Metrology Vol. 3 (Github repo)) or Quantum Metrology Vol. 3 (HTML version) for
full details.

# Configure settings for case study

# Set case study by name
fitSystem='OCS'
fitStem=f"fit_withNoise_orb13"

# Add noise?
addNoise = 'y'
mu, sigma = 0, 0.05 # Up to approx 10% noise (+/- 0.05)

# Batching - number of fits to run between data dumps
batchSize = 10

# Total fits to run
nMax = 10
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# Pull data from web (OCS case)
from epsproc.util.io import getFilesFromGithub

# Set dataName (will be used as download subdir)
dataName = 'OCSfitting'
# OCS matrix elements
fDictMatE, fAllMatE = getFilesFromGithub(subpath='data/photoionization/OCS_multiorb',␣

↪dataName=dataName, ref='dev')
# OCS alignment data
fDictADM, fAllADM = getFilesFromGithub(subpath='data/alignment/OCS_ADMs_28K_VM_070722

↪', dataName=dataName, ref='dev')

Querying URL: https://api.github.com/repos/phockett/epsproc/contents/data/
↪photoionization/OCS_multiorb?ref=dev

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/OCS_survey.orb10_E0.1_2.0_30.1eV.inp.out already exists

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/OCS_survey.orb10_E1.1_2.0_31.1eV.inp.out already exists

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/OCS_survey.orb11_E0.1_2.0_30.1eV.inp.out already exists

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/OCS_survey.orb11_E1.1_2.0_31.1eV.inp.out already exists

Querying URL: https://api.github.com/repos/phockett/epsproc/contents/data/
↪alignment/OCS_ADMs_28K_VM_070722?ref=dev

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/A20_300fs_4p2TW_28K.dat already exists

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/A40_300fs_4p2TW_28K.dat already exists

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/A60_300fs_4p2TW_28K.dat already exists

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/c2t_300fs_4p2TW_28K.dat already exists

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/time_300fs_4p2TW_28K.dat already exists

# Fitting setup including data generation and parameter creation

# Set datapath,
dataPath = Path(Path.cwd(),dataName)

# Run general config script with dataPath set above
%run "../scripts/setup_fit_case-studies_270723.py" -d {dataPath} -a {dataPath} -c

↪{fitSystem} -n {addNoise} --sigma {sigma} -a3D 'y'

12.2 Load existing fit data or run fits

Note that running fits may be quite time-consuming and computationally intensive, depending on the size of the size of
the problem. The default case here will run a small batch for testing if there is no existing data found on the dataPath,
otherwise the data is loaded for analysis.

# Look for existing Pickle files on path
dataFiles = list(dataPath.expanduser().glob('*.pickle'))

(continues on next page)
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(continued from previous page)

if not dataFiles:
print("No data found, executing minimal fitting run...")

# Run fit batch - single
# data.multiFit(nRange = [n,n+batchSize-1], num_workers=batchSize)

# Run fit batches with checkpoint files
for n in np.arange(0,nMax,batchSize):

print(f'*** Running batch [{n},{n+batchSize-1}], {dt.now().strftime("%d%m%y_
↪%H-%M-%S")}')

# Run fit batch
data.multiFit(nRange = [n,n+batchSize-1], num_workers=batchSize)

# Dump data so far
data.writeFitData(outStem=f"{fitSystem}_{n+batchSize-1}_{fitStem}")

print(f'Finished batch [{n},{n+batchSize-1}], {dt.now().strftime("%d%m%y_%H-
↪%M-%S")}')

print(f'Written to file {fitSystem}_{n+batchSize-1}_{fitStem}')

else:
dataFileIn = dataFiles[-1] # Add index to select file, although loadFitData␣

↪will concat multiple files
# Note that concat currently only works for fixed␣

↪batch sizes however.
print(f"Set dataFiles: {dataFileIn}")
data.loadFitData(fList=dataFileIn, dataPath=dataPath) #.expanduser())

data.BLMfitPlot(keys=['subset','sim'])

# # Check ADMs
# data.data['subset']['ADM'].unstack().where(data.data['subset']['ADM'].unstack().

↪K>0) \
# .real.hvplot.line(x='t').overlay(['K','Q','S'])

Set dataFiles: /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/OCS_999_fit_3D-test_withNoise_orb13_200723_05-47-50.pickle

Read data from /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/OCS_999_fit_3D-test_withNoise_orb13_200723_05-47-50.pickle with␣
↪pickle.

Dataset: subset, AFBLM
Dataset: sim, AFBLM
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# Check ADMs
# Basic plotter
data.ADMplot(keys = 'subset')

Dataset: subset, ADM
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# Fits appear as integer indexed items in the main data structure.
data.data.keys()

12.3 Post-processing and data overview

Post-processing involves aggregation of all the fit run results into a single data structure. This can then be analysed
statistically and examined for for best-fit results. In the statistical sense, this is essentailly a search for candidate radial
matrix elements, based on the assumption that some of the minima found in the 𝜒2 hyperspace will be the true results.
Even if a clear global minima does not exist, searching for candidate radial matrix elements sets based on clustering of
results and multiple local minima is still expected to lead to viable candidates provided that the information content of the
dataset is sufficient. However, as discussed elsewhere (see Sect. 7.2), in some cases this may not be the case, and other
limitations may apply (e.g. certain parameters may be undefined), or additional data required for unique determination
of the radial matrix elements.
For more details on the analysis routines, see the PEMtk documentation [20], particularly the fit fidelity and analysis page,
and molecular frame analysis data processing page (full analysis for Ref. [3], illustrating the 𝑁2 case).

# General stats & post-processing to data tables
data.analyseFits()

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

(continues on next page)
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(continued from previous page)

{ 'Fits': 975,
'Minima': {'chisqr': 0.2510827613766783, 'redchi': 0.00011080439601795158},
'Stats': { 'chisqr': min 0.251

mean 0.253
median 0.251
max 2.304
std 0.066
var 0.004
Name: chisqr, dtype: float64,

'redchi': min 1.108e-04
mean 1.117e-04
median 1.108e-04
max 1.017e-03
std 2.902e-05
var 8.420e-10
Name: redchi, dtype: float64},

'Success': 971}

# The BLMsetPlot routine will output aggregate fit results.
# Here the spread can be taken as a general indication of the uncertainty of
# the fitting, and indicate whether the fit is well-characterised/the information
# content of the data is sufficient.
data.BLMsetPlot(xDim = 't', thres=1e-6) # With xDim and thres set, for more control␣

↪over outputs

# Glue plot for later
glue("OCS-fitResultsBLM",data.data['plots']['BLMsetPlot'])

Fig. 12.1: Fit overview plot - 𝛽𝐿,𝑀(𝑡). Here dashed lines with ‘+’ markers indicates the input data, and bands indicate the
mean fit results, where the width is the standard deviation in the fit model results. (See the PEMtk documentation [20]
for details, particularly the analysis routines page.)
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# Write aggregate datasets to HDF5 format
# This is more robust than Pickled data, but PEMtk currently only support output for␣

↪aggregate (post-processed) fit data.

data.processedToHDF5(dataPath = dataPath, outStem = dataFileIn.name, timeStamp=False)

Dumped self.data[fits][dfLong] to /home/jovyan/jake-home/buildTmp/_latest_build/
↪pdf/doc-source/part2/OCSfitting/OCS_999_fit_3D-test_withNoise_orb13_200723_05-47-
↪50.pickle_dfLong.pdHDF with Pandas .to_hdf() routine.

Dumped data to /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/OCS_999_fit_3D-test_withNoise_orb13_200723_05-47-50.pickle_dfLong.
↪pdHDF with pdHDF.

Dumped self.data[fits][AFxr] to /home/jovyan/jake-home/buildTmp/_latest_build/pdf/
↪doc-source/part2/OCSfitting/OCS_999_fit_3D-test_withNoise_orb13_200723_05-47-50.
↪pickle_AFxr.pdHDF with Pandas .to_hdf() routine.

Dumped data to /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪OCSfitting/OCS_999_fit_3D-test_withNoise_orb13_200723_05-47-50.pickle_AFxr.pdHDF␣
↪with pdHDF.

# Histogram fit results (reduced chi^2 vs. fit index)
# This may be quite slow for large datasets, setting limited ranges may help

# Use default auto binning
# data.fitHist()

# Example with range set
data.fitHist(thres=1.11e-4, bins=100)

# Glue plot for later
glue("OCS-fitHist",data.data['plots']['fitHistPlot'])

Mask selected 974 results (from 975).

:AdjointLayout
:Scatter [redchi] (Fit)
:Histogram [Fit] (Fit_count)
:Histogram [redchi] (redchi_count)

Here, Fig. 12.1 shows an overview of the results compared with the input data, and Fig. 12.2 an overview of 𝜒2 vs. fit
index. Bands in the 𝜒2 dimension can indicate groupings (local minima) are consistently found. Assuming each grouping
is a viable fit candidate parameter set, these can then be explored in further detail.
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Fig. 12.2: Fit overview plot - 𝜒2 vs. fit index. Here bands indicate groupings (local minima) are consistently found.

12.4 Data exploration

The general aim in this procedure is to ascertain whether there was a good spread of parameters explored, and a single
(or few sets) of best-fit results. There are a few procedures and helper methods for this…

12.4.1 View results

Single results sets can be viewed in the main data structure, indexed by integers.

# Check keys
fitNumber = 2
data.data[fitNumber].keys()

dict_keys(['AFBLM', 'residual', 'results'])

Here results is an lmFit object, which includes final fit results and information, and AFBLM contains the model (fit)
output (i.e. resultant AF-𝛽𝐿𝑀 values).
An example is shown below. Of particular note here is which parameters have vary=True - these are included in the
fitting - and if there is a column expression, which indicates any parameters defined to have specific relationships
(see Chpt. 9). Any correlations found during fitting are also shown, which can also indicate parameters which are related
(even if this is not predefined or known a priori).

# Show some results
data.data[fitNumber]['results']

12.5 Classify candidate sets

To probe the minima found, the classifyFitsmethod can be used. This bins results into “candidate” groups, which
can then be examined in detail.

# Run with defaults
# data.classifyFits()

# For more control, pass bins
# Here the minima is set at one end, and a %age range used for bins
minVal = data.fitsSummary['Stats']['redchi']['min']
binRangePC = 1e-5
data.classifyFits(bins = [minVal, minVal + binRangePC*minVal , 20])
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success chisqr redchi
count unique top freq count unique top freq count unique top freq

redchiGroup
A 47 1 True 47 47.0 47.0 0.251 1.0 47.0 47.0 1.108e-04 1.0
B 82 1 True 82 82.0 82.0 0.251 1.0 82.0 82.0 1.108e-04 1.0
C 65 1 True 65 65.0 65.0 0.251 1.0 65.0 65.0 1.108e-04 1.0
D 76 1 True 76 76.0 76.0 0.251 1.0 76.0 76.0 1.108e-04 1.0
E 51 1 True 51 51.0 51.0 0.251 1.0 51.0 51.0 1.108e-04 1.0
F 54 1 True 54 54.0 54.0 0.251 1.0 54.0 54.0 1.108e-04 1.0
G 28 1 True 28 28.0 28.0 0.251 1.0 28.0 28.0 1.108e-04 1.0
H 24 1 True 24 24.0 24.0 0.251 1.0 24.0 24.0 1.108e-04 1.0
I 23 1 True 23 23.0 23.0 0.251 1.0 23.0 23.0 1.108e-04 1.0
J 10 1 True 10 10.0 10.0 0.251 1.0 10.0 10.0 1.108e-04 1.0
K 12 1 True 12 12.0 12.0 0.251 1.0 12.0 12.0 1.108e-04 1.0
L 7 1 True 7 7.0 7.0 0.251 1.0 7.0 7.0 1.108e-04 1.0
M 3 1 True 3 3.0 3.0 0.251 1.0 3.0 3.0 1.108e-04 1.0
N 7 1 True 7 7.0 7.0 0.251 1.0 7.0 7.0 1.108e-04 1.0
O 7 1 True 7 7.0 7.0 0.251 1.0 7.0 7.0 1.108e-04 1.0
P 7 1 True 7 7.0 7.0 0.251 1.0 7.0 7.0 1.108e-04 1.0
Q 5 1 True 5 5.0 5.0 0.251 1.0 5.0 5.0 1.108e-04 1.0
R 7 1 True 7 7.0 7.0 0.251 1.0 7.0 7.0 1.108e-04 1.0
S 3 1 True 3 3.0 3.0 0.251 1.0 3.0 3.0 1.108e-04 1.0

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.
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12.6 Explore candidate result sets

Drill-down on a candidate set of results, and examine values and spreads. For more details see PEMtk documentation
[20], especially the analysis routines page. (See also Sect. 5.3 for details on the plotting libaries implemented here.)

12.6.1 Raw results

Plot spreads in magnitude and phase parameters. Statistical plots are available for Seaborn and Holoviews backends, with
some slightly different options.

# From the candidates, select a group for analysis
selGroup = 'A'

# paramPlot can be used to check the spread on each parameter.
# Plots use Seaborn or Holoviews/Bokeh
# Colour-mapping is controlled by the 'hue' paramter, additionally pass hRound for␣

↪sig. fig control.
# The remap setting allows for short-hand labels as set in data.lmmu

paramType = 'm' # Set for (m)agnitude or (p)hase parameters
hRound = 14 # Set for cmapping, default may be too small (leads to all grey cmap on␣

↪points)

data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',

(continues on next page)
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(continued from previous page)

backend=paramPlotBackend, hvType='violin',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7fae5c435db0>
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paramType = 'p' # Set for (m)agnitude or (p)hase parameters
data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',␣

↪backend=paramPlotBackend, hvType='violin',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7fae64402d10>
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12.6.2 Phases, phase shifts & corrections

Depending on how the fit was configured, phases may be defined in different ways. To set the phases relative to a speific
parameter, and wrap to a specified range, use the phaseCorrection() method. This defaults to using the first
parameter as a reference phase, and wraps to −𝜋 ∶ 𝜋. The phase-corrected values are output to a new Type, ‘pc’, and a
set of normalised magnitudes to ‘n’. Additional settings can be passed for more control, as shown below.

# Run phase correction routine
# Set absFlag=True for unsigned phases (mapped to 0:pi)
# Set useRef=False to set ref phase as 0, otherwise the reference value is set.
phaseCorrParams={'absFlag':True, 'useRef':False}
data.phaseCorrection(**phaseCorrParams)

Examine new data types…

paramType = 'n'
data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',

backend=paramPlotBackend, hvType='violin', kind='box',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7fae5c449d80>
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paramType = 'pc'
data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',

backend=paramPlotBackend, hvType='violin', kind='box',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7fae64402d10>
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12.7 Parameter estimation & fidelity

For case studies, the fit results can be directly compared to the known input parameters. This should give a feel for how
well the data defines the matrix elements (parameters) in this case. In general, probing the correlations and spread of
results, and comparing to other (unfitted) results is required to estimate fidelity, see Quantum Metrology Vols. 1 & 2 [4,
9] for further discussion.

12.7.1 Best values and statistics

To get a final parameter set and associated statistics, based on a subset of the fit results, the paramsReport()method
is available. If reference data is available, as for the case studies herein, the paramsCompare() method can also be
used to compare with the reference case.

# Parameter summary
data.paramsReport(inds = {'redchiGroup':selGroup})

# Parameter comparison
# Note this uses phaseCorrParams as set previously for consistency
data.paramsCompare(phaseCorrParams=phaseCorrParams)

# Display above results With column name remapping to (l,m) labels only

# With Pandas functionality
data.paramsSummaryComp.rename(columns=data.lmmu['lmMap'])

# With utility method
# summaryRenamed = pemtk.fit._util.renameParams(data.paramsSummaryComp, data.lmmu[

↪'lmMap'])
# summaryRenamed
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Param 1,1 1,-1 2,1 2,-1 3,1 3,-1 4,1 4,-1 5,1 5,-1 6,1 6,-1 7,1 7,-1 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0
Type Source dType
m mean num 0.395 0.395 0.384 0.384 1.041 1.041 0.378 0.378 0.239 0.239 0.439 0.439 0.853 0.853 0.752 0.305 0.860 0.954 0.615 0.402 0.455 1.098

ref num 0.299 0.299 0.735 0.735 0.966 0.966 0.875 0.875 0.541 0.541 0.108 0.108 0.036 0.036 0.607 0.855 0.967 1.204 0.563 0.535 0.147 0.026
diff % 24.383 24.383 91.513 91.513 7.275 7.275 131.508 131.508 126.743 126.743 75.476 75.476 95.786 95.786 19.306 180.049 12.502 26.162 8.467 33.241 67.712 97.652

num 0.096 0.096 -0.351 -0.351 0.076 0.076 -0.497 -0.497 -0.302 -0.302 0.331 0.331 0.817 0.817 0.145 -0.549 -0.108 -0.250 0.052 -0.134 0.308 1.072
std % 19.952 19.952 35.782 35.782 3.929 3.929 9.266 9.266 17.524 17.524 16.566 16.566 0.862 0.862 14.208 19.475 5.556 6.039 9.625 10.877 18.151 0.574

num 0.079 0.079 0.137 0.137 0.041 0.041 0.035 0.035 0.042 0.042 0.073 0.073 0.007 0.007 0.107 0.059 0.048 0.058 0.059 0.044 0.083 0.006
diff/std % 122.212 122.212 255.754 255.754 185.143 185.143 1419.210 1419.210 723.234 723.234 455.606 455.606 11115.642 11115.642 135.881 924.509 225.018 433.192 87.969 305.597 373.043 17012.358

n mean num 0.129 0.129 0.125 0.125 0.340 0.340 0.123 0.123 0.078 0.078 0.143 0.143 0.278 0.278 0.246 0.100 0.281 0.312 0.201 0.131 0.149 0.359
ref num 0.097 0.097 0.240 0.240 0.315 0.315 0.286 0.286 0.177 0.177 0.035 0.035 0.012 0.012 0.198 0.279 0.316 0.393 0.184 0.175 0.048 0.008
diff % 24.386 24.386 91.506 91.506 7.278 7.278 131.499 131.499 126.734 126.734 75.477 75.477 95.786 95.786 19.309 180.038 12.498 26.158 8.470 33.236 67.713 97.652

num 0.031 0.031 -0.115 -0.115 0.025 0.025 -0.162 -0.162 -0.099 -0.099 0.108 0.108 0.267 0.267 0.047 -0.179 -0.035 -0.082 0.017 -0.044 0.101 0.350
std % 19.952 19.952 35.782 35.782 3.929 3.929 9.266 9.266 17.524 17.524 16.566 16.566 0.862 0.862 14.208 19.475 5.556 6.039 9.625 10.877 18.151 0.574

num 0.026 0.026 0.045 0.045 0.013 0.013 0.011 0.011 0.014 0.014 0.024 0.024 0.002 0.002 0.035 0.019 0.016 0.019 0.019 0.014 0.027 0.002
diff/std % 122.226 122.226 255.734 255.734 185.231 185.231 1419.117 1419.117 723.186 723.186 455.611 455.611 11115.592 11115.592 135.902 924.455 224.942 433.115 88.005 305.551 373.049 17012.501

p mean num -2.200 -2.200 0.091 0.091 -0.054 -0.054 -0.139 -0.139 0.979 0.979 0.515 0.515 0.490 0.490 0.161 0.966 0.177 0.380 0.095 1.237 0.763 0.494
ref num -2.200 -2.200 -1.410 -1.410 -2.100 -2.100 -0.800 -0.800 0.131 0.131 1.218 1.218 2.855 2.855 -2.003 0.983 2.679 -0.535 0.343 2.065 2.594 -1.519
diff % 0.000 0.000 1646.083 1646.083 3757.652 3757.652 475.859 475.859 86.591 86.591 136.728 136.728 483.135 483.135 1341.919 1.698 1417.730 240.975 261.343 67.010 239.854 407.175

num 0.000 0.000 1.501 1.501 2.046 2.046 0.661 0.661 0.848 0.848 -0.704 -0.704 -2.366 -2.366 2.164 -0.016 -2.503 0.915 -0.248 -0.829 -1.830 2.013
std % 0.000 0.000 1572.473 1572.473 4976.382 4976.382 1110.494 1110.494 19.054 19.054 462.998 462.998 191.036 191.036 986.064 21.018 1332.830 307.217 1581.735 125.579 300.904 183.068

num 0.000 0.000 1.434 1.434 2.709 2.709 1.542 1.542 0.187 0.187 2.383 2.383 0.935 0.935 1.590 0.203 2.353 1.166 1.500 1.553 2.296 0.905
diff/std % NaN NaN 104.681 104.681 75.510 75.510 42.851 42.851 454.443 454.443 29.531 29.531 252.903 252.903 136.088 8.079 106.370 78.438 16.523 53.361 79.711 222.417

pc mean num 0.000 0.000 1.796 1.796 0.888 0.888 1.816 1.816 2.979 2.979 1.374 1.374 2.125 2.125 1.826 2.965 1.348 1.875 1.810 1.739 1.402 2.156
ref num 0.000 0.000 0.790 0.790 0.100 0.100 1.401 1.401 2.332 2.332 2.865 2.865 1.228 1.228 0.197 3.100 1.404 1.665 2.543 2.018 1.489 0.682
diff % NaN NaN 56.010 56.010 88.748 88.748 22.861 22.861 21.725 21.725 108.515 108.515 42.228 42.228 89.190 4.549 4.115 11.173 40.498 16.025 6.220 68.373

num 0.000 0.000 1.006 1.006 0.788 0.788 0.415 0.415 0.647 0.647 -1.491 -1.491 0.897 0.897 1.629 -0.135 -0.055 0.209 -0.733 -0.279 -0.087 1.474
std % NaN NaN 46.193 46.193 17.279 17.279 36.044 36.044 3.214 3.214 49.061 49.061 7.845 7.845 37.182 3.392 47.113 10.955 35.471 13.679 48.485 7.998

num 0.000 0.000 0.830 0.830 0.153 0.153 0.654 0.654 0.096 0.096 0.674 0.674 0.167 0.167 0.679 0.101 0.635 0.205 0.642 0.238 0.680 0.172
diff/std % NaN NaN 121.253 121.253 513.612 513.612 63.425 63.425 676.042 676.042 221.181 221.181 538.275 538.275 239.873 134.102 8.735 101.990 114.173 117.152 12.828 854.857

12.8 Using the reconstructed matrix elements

The results tables are accessible directly, and there are also methods to reformat the best fit results for use in further
calculations.

# self.paramsSummary contains the results above as Pandas Dataframe, usual Pandas␣
↪methods can be applied.

data.paramsSummary['data'].describe()
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Param P_S_P_1_1_n1_1 P_S_P_1_n1_1_1 P_S_P_2_1_n1_1 P_S_P_2_n1_1_1 P_S_P_3_1_n1_1 P_S_P_3_n1_1_1 P_S_P_4_1_n1_1 P_S_P_4_n1_1_1 P_S_P_5_1_n1_1 P_S_P_5_n1_1_1 P_S_P_6_1_n1_1 P_S_P_6_n1_1_1 P_S_P_7_1_n1_1 P_S_P_7_n1_1_1 S_S_S_0_0_0_1 S_S_S_1_0_0_1 S_S_S_2_0_0_1 S_S_S_3_0_0_1 S_S_S_4_0_0_1 S_S_S_5_0_0_1 S_S_S_6_0_0_1 S_S_S_7_0_0_1
count 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000 188.000
mean -0.419 -0.419 0.599 0.599 0.554 0.554 0.545 0.545 1.069 1.069 0.618 0.618 0.937 0.937 0.746 1.084 0.666 0.880 0.680 0.877 0.692 1.027
std 1.042 1.042 1.083 1.083 1.416 1.416 1.125 1.125 1.162 1.162 1.312 1.312 0.859 0.859 1.087 1.141 1.298 0.860 1.059 1.012 1.276 0.845
min -2.200 -2.200 -3.142 -3.142 -3.142 -3.142 -3.139 -3.139 0.045 0.045 -3.142 -3.142 -0.348 -0.348 -3.142 0.046 -3.142 -0.677 -2.994 -3.005 -3.142 -0.358
25% -0.550 -0.550 0.113 0.113 0.337 0.337 0.121 0.121 0.128 0.128 0.152 0.152 0.277 0.277 0.235 0.137 0.274 0.310 0.198 0.138 0.158 0.358
50% 0.033 0.033 0.322 0.322 0.928 0.928 0.359 0.359 0.447 0.447 0.457 0.457 0.849 0.849 0.700 0.469 0.820 0.941 0.571 0.422 0.479 1.095
75% 0.177 0.177 1.063 1.063 1.039 1.039 0.952 0.952 1.771 1.771 0.974 0.974 1.956 1.956 1.025 1.684 0.996 1.754 1.150 1.831 1.086 1.950
max 0.516 0.516 3.121 3.121 3.142 3.142 3.142 3.142 3.116 3.116 3.142 3.142 2.709 2.709 3.142 3.138 3.142 2.642 3.142 2.540 3.142 2.736

# To set matrix elements from aggregate fit results, use `seetAggMatE` for Pandas
data.setAggMatE(simpleForm = True)
data.data['agg']['matEpd']

Set reformatted aggregate data to self.data[agg][matEpd].

Type m n p pc comp compC labels
Cont l m mu
P 1 -1 1 0.395 0.129 -2.200 0.000 -0.232-0.319j 0.129+0.000j 1,-1

1 -1 0.395 0.129 -2.200 0.000 -0.232-0.319j 0.129+0.000j 1,1
2 -1 1 0.384 0.125 0.091 1.796 0.382+0.035j -0.028+0.122j 2,-1

1 -1 0.384 0.125 0.091 1.796 0.382+0.035j -0.028+0.122j 2,1
3 -1 1 1.041 0.340 -0.054 0.888 1.040-0.057j 0.215+0.264j 3,-1

1 -1 1.041 0.340 -0.054 0.888 1.040-0.057j 0.215+0.264j 3,1
4 -1 1 0.378 0.123 -0.139 1.816 0.374-0.052j -0.030+0.120j 4,-1

1 -1 0.378 0.123 -0.139 1.816 0.374-0.052j -0.030+0.120j 4,1
5 -1 1 0.239 0.078 0.979 2.979 0.133+0.198j -0.077+0.013j 5,-1

1 -1 0.239 0.078 0.979 2.979 0.133+0.198j -0.077+0.013j 5,1
6 -1 1 0.439 0.143 0.515 1.374 0.382+0.216j 0.028+0.141j 6,-1

1 -1 0.439 0.143 0.515 1.374 0.382+0.216j 0.028+0.141j 6,1
7 -1 1 0.853 0.278 0.490 2.125 0.753+0.401j -0.147+0.237j 7,-1

1 -1 0.853 0.278 0.490 2.125 0.753+0.401j -0.147+0.237j 7,1
S 0 0 0 0.752 0.246 0.161 1.826 0.742+0.121j -0.062+0.238j 0,0

1 0 0 0.305 0.100 0.966 2.965 0.173+0.251j -0.098+0.017j 1,0
2 0 0 0.860 0.281 0.177 1.348 0.847+0.151j 0.062+0.274j 2,0
3 0 0 0.954 0.312 0.380 1.875 0.886+0.354j -0.093+0.297j 3,0
4 0 0 0.615 0.201 0.095 1.810 0.612+0.058j -0.048+0.195j 4,0
5 0 0 0.402 0.131 1.237 1.739 0.132+0.380j -0.022+0.129j 5,0
6 0 0 0.455 0.149 0.763 1.402 0.329+0.314j 0.025+0.146j 6,0
7 0 0 1.098 0.359 0.494 2.156 0.967+0.521j -0.198+0.299j 7,0

# To set matrix elements from aggregate fit results, use `aggToXR` for Xarray
# data.aggToXR(refKey = 'orb5', returnType = 'ds', conformDims=True) # use full ref␣

↪dataset
data.aggToXR(refKey = 'subset', returnType = 'ds', conformDims=True) # Subselected␣

↪matE
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Added dim Total
Added dim Targ
Added dim Total
Added dim Targ
Set XR dataset for self.data['agg']['matE']

12.8.1 Density matrices

New (experimental) code for density matrix plots and comparison. See Sect. 6.4 for discussion. Code adapted from
the PEMtk documentation [20] MF reconstruction page, original analysis for Ref. [3], illustrating the 𝑁2 case. If the
reconstruction is good, the differences (fidelity) should be on the order of the experimental noise level/reconstruction
uncertainty, around 10% in the case studies herein; in general the values and patterns of the matrices can also indicate
aspects of the retrieval that worked well, or areas where values are poorly defined/recovered from the given dataset.

12.8.2 Plot MF PADs

Routines below adapted from the PEMtk documentation [20] MF reconstruction data processing page (original analysis
page for Ref. [3], illustrating the 𝑁2 case). The routines include calls to self.mfpadNumeric() for numerical
expansion of the MF-PADs, and self.padPlot() for plotting. Results are illustrated for the retrieved and reference
cases in Fig. 12.4 and Fig. 12.5 respectively, and the differential results (reference minus fitted results) in Fig. 12.6.

172Chapter 12. Case study: Generalised bootstrapping for a linear heteronuclear scattering system,
𝑂𝐶𝑆 (𝐶∞𝑣)

https://pemtk.readthedocs.io
https://pemtk.readthedocs.io/en/latest/topical_review_case_study/matrix_element_extraction_MFrecon_PEMtk_180722-dist.html#Density-matrix-plotting
https://pemtk.readthedocs.io
https://pemtk.readthedocs.io/en/latest/topical_review_case_study/MFPAD_replotting_from_file_190722-dist.html


Quantum Metrology with Photoelectrons Vol. 3 *Analysis methodologies*

Fig. 12.3: Density matrix comparison - rows show (a) reference case (with signs of phases removed), (b) reconstructed
case, (c) differences. Columns are (left) imaginary component, (right) real component. If the reconstruction is good, the
differences (fidelity) should be on the order of the experimental noise level/reconstruction uncertainty, around 10% in the
case studies herein.12.8. Using the reconstructed matrix elements 173
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Fig. 12.4: MF-PADs computed from retrieved matrix elements for (𝑥, 𝑦, 𝑧, 𝑑) polarization geometries, where 𝑑 is the
“diagonal” case with the polarization axis as 45 degrees to the 𝑧-axis.

Fig. 12.5: MF-PADs computed from reference ab initio matrix elements for (𝑥, 𝑦, 𝑧, 𝑑) polarization geometries, where 𝑑
is the “diagonal” case with the polarization axis as 45 degrees to the 𝑧-axis.

Fig. 12.6: MF-PADs differences between retrieved and reference cases for (𝑥, 𝑦, 𝑧, 𝑑) polarization geometries, where 𝑑
is the “diagonal” case with the polarization axis as 45 degrees to the 𝑧-axis. Note diffs are normalised to emphasize the
shape, but not mangnitudes, of the differences - see the density matrix comparisons for a more rigourous fidelity analysis.
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CHAPTER

THIRTEEN

CASE STUDY: GENERALISED BOOTSTRAPPING FOR A GENERAL
ASYMMETRIC TOP SCATTERING SYSTEM, 𝐶2𝐻4 (𝐷2𝐻)

In this chapter, the full code and analysis details of the case study for 𝐶2𝐻4 are given, including obtaining required data,
running fits and analysis routines. For more details on the routines, see the PEMtk documentation [20]; for the analysis
see particularly the fit fidelity and analysis page, and molecular frame analysis data processing page (full analysis for Ref.
[3], illustrating the 𝑁2 case).

13.1 General setup

In the following code cells (see source notebooks for full details) the general setup routines (as per the outline in Chpt.
10 are executed via a configuration script with presets for the case studies herein.
Additionally, the routines will either run fits, or load existing data if available. Since fitting can be computationally
demanding, it is, in general, recommended to approach large fitting problems carefully.

General note on fitting
Computational outputs in this chapter are significantly truncated in the PDF, and some simplified plots are used; see
source notebooks (via Quantum Metrology Vol. 3 (Github repo)) or Quantum Metrology Vol. 3 (HTML version) for
full details.

# Configure settings for case study

# Set case study by name
fitSystem='C2H4'
fitStem=f"fit_3D-test_withNoise_orb8"

# Add noise?
addNoise = 'y'
mu, sigma = 0, 0.05 # Up to approx 10% noise (+/- 0.05)

# Batching - number of fits to run between data dumps
batchSize = 10

# Total fits to run
nMax = 10
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# Pull data from web (C2H4 case)
from epsproc.util.io import getFilesFromGithub

# Set dataName (will be used as download subdir)
dataName = 'C2H4fitting'
# C2H4 matrix elements
GHbranch='3d-AFPAD-dev'
fDictMatE, fAllMatE = getFilesFromGithub(subpath='data/photoionization/C2H4',␣

↪dataName=dataName, ref=GHbranch)
# C2H4 alignment data
fDictADM, fAllADM = getFilesFromGithub(subpath='data/alignment/C2H4_ADMs_8TW_120fs_VM

↪', dataName=dataName, ref=GHbranch)

Querying URL: https://api.github.com/repos/phockett/epsproc/contents/data/
↪photoionization/C2H4?ref=3d-AFPAD-dev

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪C2H4fitting/C2H4_1.0-100.0eV_orb8_B3u.inp.out already exists

Querying URL: https://api.github.com/repos/phockett/epsproc/contents/data/
↪alignment/C2H4_ADMs_8TW_120fs_VM?ref=3d-AFPAD-dev

Local file /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪C2H4fitting/ADMs_8TW_120fs_5K.mat already exists

# Fitting setup including data generation and parameter creation

# Set datapath,
dataPath = Path(Path.cwd(),dataName)
ADMfile = 'ADMs_8TW_120fs_5K.mat'

# Run general config script with dataPath set above
%run "../scripts/setup_fit_case-studies_270723.py" -d {dataPath} -a {ADMfile} -c

↪{fitSystem} -n {addNoise} --sigma {sigma}

13.2 Load existing fit data or run fits

Note that running fits may be quite time-consuming and computationally intensive, depending on the size of the size of
the problem. The default case here will run a small batch for testing if there is no existing data found on the dataPath,
otherwise the data is loaded for analysis.

# Look for existing Pickle files on path
dataFiles = list(dataPath.expanduser().glob('*.pickle'))

if not dataFiles:
print("No data found, executing minimal fitting run...")

# Run fit batch - single
# data.multiFit(nRange = [n,n+batchSize-1], num_workers=batchSize)

# Run fit batches with checkpoint files
for n in np.arange(0,nMax,batchSize):

print(f'*** Running batch [{n},{n+batchSize-1}], {dt.now().strftime("%d%m%y_
↪%H-%M-%S")}')

(continues on next page)
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(continued from previous page)

# Run fit batch
data.multiFit(nRange = [n,n+batchSize-1], num_workers=batchSize)

# Dump data so far
data.writeFitData(outStem=f"{fitSystem}_{n+batchSize-1}_{fitStem}")

print(f'Finished batch [{n},{n+batchSize-1}], {dt.now().strftime("%d%m%y_%H-
↪%M-%S")}')

print(f'Written to file {fitSystem}_{n+batchSize-1}_{fitStem}')

else:
dataFileIn = dataFiles[-1] # Add index to select file, although loadFitData␣

↪will concat multiple files
# Note that concat currently only works for fixed␣

↪batch sizes however.
print(f"Set dataFiles: {dataFileIn}")
data.loadFitData(fList=dataFileIn, dataPath=dataPath) #.expanduser())

data.BLMfitPlot(keys=['subset','sim'])

# # Check ADMs
# data.data['subset']['ADM'].unstack().where(data.data['subset']['ADM'].unstack().

↪K>0) \
# .real.hvplot.line(x='t').overlay(['K','Q','S'])

Set dataFiles: /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪C2H4fitting/C2H4_399_fit_3D-test_withNoise_orb8_270723_13-45-22.pickle

Read data from /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪C2H4fitting/C2H4_399_fit_3D-test_withNoise_orb8_270723_13-45-22.pickle with␣
↪pickle.

Dataset: subset, AFBLM
Dataset: sim, AFBLM
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# Check ADMs
# Basic plotter
data.ADMplot(keys = 'subset')

Dataset: subset, ADM
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# Fits appear as integer indexed items in the main data structure.
data.data.keys()

13.3 Post-processing and data overview

Post-processing involves aggregation of all the fit run results into a single data structure. This can then be analysed
statistically and examined for for best-fit results. In the statistical sense, this is essentailly a search for candidate radial
matrix elements, based on the assumption that some of the minima found in the 𝜒2 hyperspace will be the true results.
Even if a clear global minima does not exist, searching for candidate radial matrix elements sets based on clustering of
results and multiple local minima is still expected to lead to viable candidates provided that the information content of the
dataset is sufficient. However, as discussed elsewhere (see Sect. 7.2), in some cases this may not be the case, and other
limitations may apply (e.g. certain parameters may be undefined), or additional data required for unique determination
of the radial matrix elements.
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For more details on the analysis routines, see the PEMtk documentation [20], particularly the fit fidelity and analysis page,
and molecular frame analysis data processing page (full analysis for Ref. [3], illustrating the 𝑁2 case).

# General stats & post-processing to data tables
data.analyseFits()

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

{ 'Fits': 390,
'Minima': {'chisqr': 5.901473330378771e-05, 'redchi': 8.901166410827708e-08},
'Stats': { 'chisqr': min 5.901e-05

mean 2.760e-04
median 6.259e-05
max 3.133e-02
std 1.935e-03
var 3.746e-06
Name: chisqr, dtype: float64,

'redchi': min 8.901e-08
mean 4.164e-07
median 9.440e-08
max 4.726e-05
std 2.919e-06
var 8.521e-12
Name: redchi, dtype: float64},
'Success': 390}

# The BLMsetPlot routine will output aggregate fit results.
# Here the spread can be taken as a general indication of the uncertainty of
# the fitting, and indicate whether the fit is well-characterised/the information
# content of the data is sufficient.
data.BLMsetPlot(xDim = 't', thres=1e-6) # With xDim and thres set, for more control␣

↪over outputs

# Glue plot for later
glue("C2H4-fitResultsBLM",data.data['plots']['BLMsetPlot'])

# Write aggregate datasets to HDF5 format
# This is more robust than Pickled data, but PEMtk currently only support output for␣

↪aggregate (post-processed) fit data.

data.processedToHDF5(dataPath = dataPath, outStem = dataFileIn.name, timeStamp=False)

Dumped self.data[fits][dfLong] to /home/jovyan/jake-home/buildTmp/_latest_build/
↪pdf/doc-source/part2/C2H4fitting/C2H4_399_fit_3D-test_withNoise_orb8_270723_13-
↪45-22.pickle_dfLong.pdHDF with Pandas .to_hdf() routine.

Dumped data to /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪C2H4fitting/C2H4_399_fit_3D-test_withNoise_orb8_270723_13-45-22.pickle_dfLong.
↪pdHDF with pdHDF.

Dumped self.data[fits][AFxr] to /home/jovyan/jake-home/buildTmp/_latest_build/pdf/
↪doc-source/part2/C2H4fitting/C2H4_399_fit_3D-test_withNoise_orb8_270723_13-45-22.
↪pickle_AFxr.pdHDF with Pandas .to_hdf() routine.

Dumped data to /home/jovyan/jake-home/buildTmp/_latest_build/pdf/doc-source/part2/
↪C2H4fitting/C2H4_399_fit_3D-test_withNoise_orb8_270723_13-45-22.pickle_AFxr.
↪pdHDF with pdHDF. (continues on next page)
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Fig. 13.1: Fit overview plot - 𝛽𝐿,𝑀(𝑡). Here dashed lines with ‘+’ markers indicates the input data, and bands indicate the
mean fit results, where the width is the standard deviation in the fit model results. (See the PEMtk documentation [20]
for details, particularly the analysis routines page.)

(continued from previous page)

# Histogram fit results (reduced chi^2 vs. fit index)
# This may be quite slow for large datasets, setting limited ranges may help

# Use default auto binning
# data.fitHist()

# Example with range set
data.fitHist(thres=3e-7, bins=100)

# Glue plot for later
glue("C2H4-fitHist",data.data['plots']['fitHistPlot'])

Mask selected 361 results (from 390).

:AdjointLayout
:Scatter [redchi] (Fit)
:Histogram [Fit] (Fit_count)
:Histogram [redchi] (redchi_count)

Here, Fig. 13.1 shows an overview of the results compared with the input data, and Fig. 13.2 an overview of 𝜒2 vs. fit
index. Bands in the 𝜒2 dimension can indicate groupings (local minima) are consistently found. Assuming each grouping
is a viable fit candidate parameter set, these can then be explored in further detail.
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Fig. 13.2: Fit overview plot - 𝜒2 vs. fit index. Here bands indicate groupings (local minima) are consistently found.

13.4 Data exploration

The general aim in this procedure is to ascertain whether there was a good spread of parameters explored, and a single
(or few sets) of best-fit results. There are a few procedures and helper methods for this…

13.4.1 View results

Single results sets can be viewed in the main data structure, indexed by integers.

# Check keys
fitNumber = 2
data.data[fitNumber].keys()

dict_keys(['AFBLM', 'residual', 'results'])

Here results is an lmFit object, which includes final fit results and information, and AFBLM contains the model (fit)
output (i.e. resultant AF-𝛽𝐿𝑀 values).
An example is shown below. Of particular note here is which parameters have vary=True - these are included in the
fitting - and if there is a column expression, which indicates any parameters defined to have specific relationships
(see Chpt. 9). Any correlations found during fitting are also shown, which can also indicate parameters which are related
(even if this is not predefined or known a priori).

# Show some results
data.data[fitNumber]['results']
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13.5 Classify candidate sets

To probe the minima found, the classifyFitsmethod can be used. This bins results into “candidate” groups, which
can then be examined in detail.

# Run with defaults
# data.classifyFits()

# For more control, pass bins
# Here the minima is set at one end, and a %age range used for bins
minVal = data.fitsSummary['Stats']['redchi']['min']
binRangePC = 1e-5
data.classifyFits(bins = [minVal, minVal + binRangePC*minVal , 20])

success chisqr redchi
count unique top freq count unique top freq count unique top freq

redchiGroup
A 5 1 True 5 5.0 5.0 0.0 1.0 5.0 5.0 0.0 1.0
B 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
C 3 1 True 3 3.0 3.0 0.0 1.0 3.0 3.0 0.0 1.0
D 3 1 True 3 3.0 3.0 0.0 1.0 3.0 3.0 0.0 1.0
E 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
F 1 1 True 1 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0
G 1 1 True 1 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0
H 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
I 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
J 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
K 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
L 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
M 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
N 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
O 1 1 True 1 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0
P 1 1 True 1 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0
Q 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN
R 2 1 True 2 2.0 2.0 0.0 1.0 2.0 2.0 0.0 1.0
S 0 0 NaN NaN 0 0 NaN NaN 0 0 NaN NaN

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.
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13.6 Explore candidate result sets

Drill-down on a candidate set of results, and examine values and spreads. For more details see PEMtk documentation
[20], especially the analysis routines page. (See also Sect. 5.3 for details on the plotting libaries implemented here.)

13.6.1 Raw results

Plot spreads in magnitude and phase parameters. Statistical plots are available for Seaborn and Holoviews backends, with
some slightly different options.

# From the candidates, select a group for analysis
selGroup = 'A'

# paramPlot can be used to check the spread on each parameter.
# Plots use Seaborn or Holoviews/Bokeh
# Colour-mapping is controlled by the 'hue' paramter, additionally pass hRound for␣

↪sig. fig control.
# The remap setting allows for short-hand labels as set in data.lmmu

paramType = 'm' # Set for (m)agnitude or (p)hase parameters
hRound = 14 # Set for cmapping, default may be too small (leads to all grey cmap on␣

↪points)

data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',

(continues on next page)
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(continued from previous page)

backend=paramPlotBackend, hvType='violin',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7fc33c175570>

paramType = 'p' # Set for (m)agnitude or (p)hase parameters
data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',␣

↪backend=paramPlotBackend, hvType='violin',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7fc33c3ac880>
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13.6.2 Phases, phase shifts & corrections

Depending on how the fit was configured, phases may be defined in different ways. To set the phases relative to a speific
parameter, and wrap to a specified range, use the phaseCorrection() method. This defaults to using the first
parameter as a reference phase, and wraps to −𝜋 ∶ 𝜋. The phase-corrected values are output to a new Type, ‘pc’, and a
set of normalised magnitudes to ‘n’. Additional settings can be passed for more control, as shown below.

# Run phase correction routine
# Set absFlag=True for unsigned phases (mapped to 0:pi)
# Set useRef=False to set ref phase as 0, otherwise the reference value is set.
phaseCorrParams={'absFlag':True, 'useRef':False}
data.phaseCorrection(**phaseCorrParams)

Examine new data types…

paramType = 'n'
data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',

backend=paramPlotBackend, hvType='violin', kind='box',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.
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<seaborn.axisgrid.FacetGrid at 0x7fc33c3bf610>

paramType = 'pc'
data.paramPlot(selectors={'Type':paramType, 'redchiGroup':selGroup}, hue = 'redchi',

backend=paramPlotBackend, hvType='violin', kind='box',
returnFlag = True, hRound=hRound, remap = 'lmMap');

*** Warning: found MultiIndex for DataFrame data.index - checkDims may have issues␣
↪with Pandas MultiIndex, but will try anyway.

<seaborn.axisgrid.FacetGrid at 0x7fc32c7673a0>
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13.7 Parameter estimation & fidelity

For case studies, the fit results can be directly compared to the known input parameters. This should give a feel for how
well the data defines the matrix elements (parameters) in this case. In general, probing the correlations and spread of
results, and comparing to other (unfitted) results is required to estimate fidelity, see Quantum Metrology Vols. 1 & 2 [4,
9] for further discussion.

13.7.1 Best values and statistics

To get a final parameter set and associated statistics, based on a subset of the fit results, the paramsReport()method
is available. If reference data is available, as for the case studies herein, the paramsCompare() method can also be
used to compare with the reference case.

# Parameter summary
data.paramsReport(inds = {'redchiGroup':selGroup})

# Parameter comparison
# Note this uses phaseCorrParams as set previously for consistency
data.paramsCompare(phaseCorrParams=phaseCorrParams)
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# Display above results With column name remapping to (l,m) labels only

# With Pandas functionality
data.paramsSummaryComp.rename(columns=data.lmmu['lmMap'])

# With utility method
# summaryRenamed = pemtk.fit._util.renameParams(data.paramsSummaryComp, data.lmmu[

↪'lmMap'])
# summaryRenamed

Param 0,0 0,0 2,0 2,0 2,2 2,2 2,-2 2,-2 4,0 4,0 4,2 4,2 4,4 4,4 4,-2 4,-2 4,-4 4,-4 6,0 6,0 2,2 2,2 2,-2 2,-2 4,2 4,2 4,4 4,4 4,-2 4,-2 4,-4 4,-4 2,1 2,-1 4,1 4,3 4,-1 4,-3
Type Source dType
m mean num 1.179 1.179 0.859 0.859 1.635 1.635 1.635 1.635 0.756 0.756 0.539 0.539 0.765 0.765 0.539 0.539 0.765 0.765 1.127 1.127 0.993 0.993 0.993 0.993 0.127 0.127 0.326 1.295 0.127 0.127 0.326 0.326 0.788 0.788 0.457 0.837 0.457 0.837

ref num 1.366 1.366 1.299 1.299 1.386 1.386 1.386 1.386 0.400 0.400 0.300 0.300 0.050 0.050 0.300 0.300 0.050 0.050 0.013 0.013 1.563 1.563 1.563 1.563 0.154 0.154 0.035 0.035 0.154 0.154 0.035 0.035 0.521 0.521 0.162 0.074 0.162 0.074
diff % 15.900 15.900 51.143 51.143 15.198 15.198 15.198 15.198 47.063 47.063 44.338 44.338 93.490 93.490 44.338 44.338 93.490 93.490 98.811 98.811 57.489 57.489 57.489 57.489 20.847 20.847 89.145 97.270 20.847 20.847 89.145 89.145 33.939 33.939 64.476 91.112 64.476 91.112

num -0.187 -0.187 -0.439 -0.439 0.248 0.248 0.248 0.248 0.356 0.356 0.239 0.239 0.716 0.716 0.239 0.239 0.716 0.716 1.114 1.114 -0.571 -0.571 -0.571 -0.571 -0.027 -0.027 0.290 1.260 -0.027 -0.027 0.290 0.290 0.267 0.267 0.295 0.762 0.295 0.762
std % 85.738 85.738 79.694 79.694 10.684 10.684 10.684 10.684 76.209 76.209 129.566 129.566 106.113 106.113 129.566 129.566 106.113 106.113 53.719 53.719 88.014 88.014 88.014 88.014 175.285 175.285 124.290 63.182 175.285 175.285 124.290 124.290 62.750 62.750 67.565 84.633 67.565 84.633

num 1.011 1.011 0.685 0.685 0.175 0.175 0.175 0.175 0.576 0.576 0.698 0.698 0.812 0.812 0.698 0.698 0.812 0.812 0.605 0.605 0.874 0.874 0.874 0.874 0.223 0.223 0.405 0.818 0.223 0.223 0.405 0.405 0.494 0.494 0.309 0.708 0.309 0.708
diff/std % 18.545 18.545 64.173 64.173 142.256 142.256 142.256 142.256 61.755 61.755 34.220 34.220 88.104 88.104 34.220 34.220 88.104 88.104 183.942 183.942 65.319 65.319 65.319 65.319 11.893 11.893 71.723 153.953 11.893 11.893 71.723 71.723 54.086 54.086 95.429 107.655 95.429 107.655

n mean num 0.187 0.187 0.130 0.130 0.254 0.254 0.254 0.254 0.124 0.124 0.075 0.075 0.124 0.124 0.075 0.075 0.124 0.124 0.166 0.166 0.139 0.139 0.139 0.139 0.022 0.022 0.048 0.198 0.022 0.022 0.048 0.048 0.128 0.128 0.067 0.121 0.067 0.121
ref num 0.268 0.268 0.255 0.255 0.272 0.272 0.272 0.272 0.079 0.079 0.059 0.059 0.010 0.010 0.059 0.059 0.010 0.010 0.003 0.003 0.307 0.307 0.307 0.307 0.030 0.030 0.007 0.007 0.030 0.030 0.007 0.007 0.102 0.102 0.032 0.015 0.032 0.015
diff % 43.240 43.240 95.963 95.963 6.979 6.979 6.979 6.979 36.651 36.651 21.732 21.732 92.098 92.098 21.732 21.732 92.098 92.098 98.419 98.419 120.398 120.398 120.398 120.398 34.531 34.531 85.449 96.489 34.531 34.531 85.449 85.449 19.929 19.929 52.096 87.952 52.096 87.952

num -0.081 -0.081 -0.125 -0.125 -0.018 -0.018 -0.018 -0.018 0.045 0.045 0.016 0.016 0.114 0.114 0.016 0.016 0.114 0.114 0.164 0.164 -0.168 -0.168 -0.168 -0.168 -0.008 -0.008 0.041 0.191 -0.008 -0.008 0.041 0.041 0.025 0.025 0.035 0.107 0.035 0.107
std % 88.166 88.166 76.703 76.703 18.057 18.057 18.057 18.057 78.802 78.802 121.307 121.307 111.570 111.570 121.307 121.307 111.570 111.570 40.666 40.666 80.492 80.492 80.492 80.492 179.484 179.484 113.665 63.960 179.484 179.484 113.665 113.665 71.017 71.017 54.975 78.110 54.975 78.110

num 0.165 0.165 0.100 0.100 0.046 0.046 0.046 0.046 0.098 0.098 0.091 0.091 0.138 0.138 0.091 0.091 0.138 0.138 0.068 0.068 0.112 0.112 0.112 0.112 0.040 0.040 0.054 0.126 0.040 0.040 0.054 0.054 0.091 0.091 0.037 0.095 0.037 0.095
diff/std % 49.044 49.044 125.111 125.111 38.647 38.647 38.647 38.647 46.511 46.511 17.915 17.915 82.547 82.547 17.915 17.915 82.547 82.547 242.015 242.015 149.579 149.579 149.579 149.579 19.239 19.239 75.176 150.859 19.239 19.239 75.176 75.176 28.062 28.062 94.763 112.600 94.763 112.600

p mean num 1.357 -2.978 1.648 -1.497 -0.357 0.413 -0.357 0.413 0.792 1.156 0.366 0.552 -0.060 1.382 0.366 0.552 -0.060 1.382 0.196 0.708 0.453 0.453 0.574 0.574 -1.190 -1.190 -0.260 -0.260 0.618 0.618 0.082 0.082 0.187 0.778 -0.706 0.273 -1.739 -0.442
ref num 0.163 -2.978 -2.385 0.756 0.802 -2.340 0.802 -2.340 2.494 -0.647 -2.930 0.212 -0.102 3.040 -2.930 0.212 -0.102 3.040 -0.062 3.080 -2.149 -2.149 0.993 0.993 1.117 1.117 -3.104 -3.104 -2.025 -2.025 0.037 0.037 -0.646 2.495 -1.079 -1.168 2.063 1.974
diff % 87.971 0.000 244.712 150.525 324.612 666.272 324.612 666.272 214.888 156.011 900.498 61.663 69.605 119.952 900.498 61.663 69.605 119.952 131.377 334.739 574.256 574.256 72.786 72.786 193.803 193.803 1093.407 1093.407 427.780 427.780 54.802 54.802 445.431 220.565 52.709 528.291 218.631 546.921

num 1.194 0.000 4.033 -2.253 -1.159 2.753 -1.159 2.753 -1.702 1.803 3.296 0.341 0.042 -1.658 3.296 0.341 0.042 -1.658 0.258 -2.372 2.602 2.602 -0.418 -0.418 -2.307 -2.307 2.844 2.844 2.643 2.643 0.045 0.045 0.833 -1.717 0.372 1.441 -3.802 -2.415
std % 131.140 0.000 71.415 104.662 599.642 567.657 599.642 567.657 219.427 201.629 707.323 518.118 4536.492 105.037 707.323 518.118 4536.492 105.037 1338.858 299.192 384.006 384.006 399.792 399.792 181.782 181.782 1031.989 1031.989 392.707 392.707 2745.660 2745.660 882.005 278.258 197.085 941.927 76.940 409.308

num 1.780 0.000 1.177 1.567 2.140 2.346 2.140 2.346 1.738 2.331 2.589 2.862 2.724 1.452 2.589 2.862 2.724 1.452 2.625 2.120 1.740 1.740 2.297 2.297 2.164 2.164 2.684 2.684 2.426 2.426 2.260 2.260 1.650 2.166 1.392 2.569 1.338 1.808
diff/std % 67.082 NaN 342.663 143.820 54.134 117.372 54.134 117.372 97.931 77.375 127.311 11.901 1.534 114.200 127.311 11.901 1.534 114.200 9.813 111.881 149.544 149.544 18.206 18.206 106.613 106.613 105.951 105.951 108.931 108.931 1.996 1.996 50.502 79.266 26.744 56.086 284.156 133.621

pc mean num 0.000 1.483 2.132 0.747 1.267 1.682 1.267 1.682 0.727 1.762 1.662 1.378 2.062 1.406 1.662 1.378 2.062 1.406 1.431 2.133 2.561 2.561 0.910 0.910 1.015 1.015 1.241 1.241 1.354 1.354 0.960 0.960 1.193 2.093 1.496 2.341 1.719 1.473
ref num 0.000 3.142 2.548 0.593 0.639 2.503 0.639 2.503 2.331 0.811 3.093 0.049 0.265 2.877 3.093 0.049 0.265 2.877 0.225 2.917 2.312 2.312 0.829 0.829 0.953 0.953 3.016 3.016 2.188 2.188 0.126 0.126 0.810 2.332 1.242 1.331 1.900 1.810
diff % NaN 111.866 19.526 20.602 49.590 48.847 49.590 48.847 220.734 53.987 86.077 96.477 87.142 104.562 86.077 96.477 87.142 104.562 84.295 36.754 9.726 9.726 8.841 8.841 6.014 6.014 142.986 142.986 61.648 61.648 86.869 86.869 32.142 11.431 16.986 43.135 10.477 22.948

num 0.000 -1.659 -0.416 0.154 0.628 -0.821 0.628 -0.821 -1.604 0.951 -1.431 1.330 1.796 -1.470 -1.431 1.330 1.796 -1.470 1.206 -0.784 0.249 0.249 0.080 0.080 0.061 0.061 -1.775 -1.775 -0.834 -0.834 0.834 0.834 0.383 -0.239 0.254 1.010 -0.180 -0.338
std % NaN 82.832 34.350 80.295 70.160 60.024 70.160 60.024 106.441 62.469 48.294 98.847 61.086 64.292 48.294 98.847 61.086 64.292 106.173 36.913 18.593 18.593 119.282 119.282 86.950 86.950 80.164 80.164 48.116 48.116 93.246 93.246 68.031 26.168 55.780 40.939 68.636 86.683

num 0.000 1.228 0.732 0.600 0.889 1.009 0.889 1.009 0.774 1.101 0.803 1.362 1.259 0.904 0.803 1.362 1.259 0.904 1.519 0.787 0.476 0.476 1.085 1.085 0.882 0.882 0.995 0.995 0.651 0.651 0.895 0.895 0.812 0.548 0.835 0.958 1.180 1.276
diff/std % NaN 135.051 56.845 25.658 70.681 81.378 70.681 81.378 207.378 86.422 178.234 97.602 142.656 162.635 178.234 97.602 142.656 162.635 79.394 99.569 52.308 52.308 7.412 7.412 6.917 6.917 178.367 178.367 128.125 128.125 93.161 93.161 47.247 43.683 30.453 105.364 15.264 26.474
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13.8 Using the reconstructed matrix elements

The results tables are accessible directly, and there are also methods to reformat the best fit results for use in further
calculations.

# self.paramsSummary contains the results above as Pandas Dataframe, usual Pandas␣
↪methods can be applied.

data.paramsSummary['data'].describe()

Param AG_B3U_B3U_0_0_1_1 AG_B3U_B3U_0_0_n1_1 AG_B3U_B3U_2_0_1_1 AG_B3U_B3U_2_0_n1_1 AG_B3U_B3U_2_2_1_1 AG_B3U_B3U_2_2_n1_1 AG_B3U_B3U_2_n2_1_1 AG_B3U_B3U_2_n2_n1_1 AG_B3U_B3U_4_0_1_1 AG_B3U_B3U_4_0_n1_1 AG_B3U_B3U_4_2_1_1 AG_B3U_B3U_4_2_n1_1 AG_B3U_B3U_4_4_1_1 AG_B3U_B3U_4_4_n1_1 AG_B3U_B3U_4_n2_1_1 AG_B3U_B3U_4_n2_n1_1 AG_B3U_B3U_4_n4_1_1 AG_B3U_B3U_4_n4_n1_1 AG_B3U_B3U_6_0_1_1 AG_B3U_B3U_6_0_n1_1 B1G_B3U_B2U_2_2_1_1 B1G_B3U_B2U_2_2_n1_1 B1G_B3U_B2U_2_n2_1_1 B1G_B3U_B2U_2_n2_n1_1 B1G_B3U_B2U_4_2_1_1 B1G_B3U_B2U_4_2_n1_1 B1G_B3U_B2U_4_4_1_1 B1G_B3U_B2U_4_4_n1_1 B1G_B3U_B2U_4_n2_1_1 B1G_B3U_B2U_4_n2_n1_1 B1G_B3U_B2U_4_n4_1_1 B1G_B3U_B2U_4_n4_n1_1 B2G_B3U_B1U_2_1_0_1 B2G_B3U_B1U_2_n1_0_1 B2G_B3U_B1U_4_1_0_1 B2G_B3U_B1U_4_3_0_1 B2G_B3U_B1U_4_n1_0_1 B2G_B3U_B1U_4_n3_0_1
count 20.000 20.000 2.000e+01 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 2.000e+01 20.000 20.000 20.000 2.000e+01 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 2.000e+01 20.000 20.000 20.000 2.000e+01 2.000e+01 20.000 20.000 20.000 20.000 20.000 20.000
mean 0.681 -0.032 1.192e+00 0.060 0.700 0.996 0.700 0.996 0.600 0.950 0.661 0.636 7.226e-01 0.919 0.661 0.636 7.226e-01 0.919 0.730 1.034 1.037 1.037 0.654 0.654 -0.007 -0.007 3.386e-01 0.618 0.530 0.530 3.539e-01 3.539e-01 0.574 0.947 0.328 0.893 0.126 0.497
std 1.122 1.956 1.058e+00 1.275 1.341 1.358 1.341 1.358 0.956 1.358 1.425 1.566 1.663e+00 1.025 1.425 1.566 1.663e+00 1.025 1.531 1.304 1.327 1.327 1.281 1.281 1.345 1.345 1.446e+00 1.530 1.277 1.277 1.192e+00 1.192e+00 0.985 1.281 1.113 1.581 1.518 1.299
min -0.523 -2.978 1.742e-05 -3.142 -2.239 -3.028 -2.239 -3.028 -1.147 -2.611 -2.570 -3.139 -3.030e+00 -0.891 -2.570 -3.139 -3.030e+00 -0.891 -3.141 -2.199 -1.306 -1.306 -3.050 -3.050 -3.141 -3.141 -3.142e+00 -3.142 -2.510 -2.510 -2.675e+00 -2.675e+00 -1.628 -2.865 -1.842 -2.838 -3.136 -3.142
25% 0.000 -0.743 2.197e-01 0.002 0.224 0.255 0.224 0.255 0.084 0.094 0.045 0.006 3.230e-04 0.061 0.045 0.006 3.230e-04 0.061 0.142 0.189 0.107 0.107 0.054 0.054 0.001 0.001 3.668e-04 0.017 0.003 0.003 3.668e-04 3.668e-04 0.076 0.242 0.041 0.106 -0.046 0.039
50% 0.077 0.167 1.122e+00 0.217 0.619 1.308 0.619 1.308 0.314 0.816 0.342 0.242 2.689e-01 0.592 0.342 0.242 2.689e-01 0.592 0.511 0.903 0.575 0.575 0.361 0.361 0.017 0.017 9.805e-02 0.376 0.089 0.089 1.911e-01 1.911e-01 0.437 0.848 0.218 0.545 0.103 0.227
75% 1.461 1.841 1.830e+00 0.670 1.634 1.852 1.634 1.852 0.827 1.678 1.914 1.513 1.925e+00 1.689 1.914 1.513 1.925e+00 1.689 1.638 2.037 2.060 2.060 1.469 1.469 0.588 0.588 1.116e+00 1.676 1.224 1.224 5.559e-01 5.559e-01 1.331 1.666 0.952 2.346 0.711 1.172
max 3.139 2.665 3.141e+00 1.773 3.082 3.076 3.082 3.076 3.051 3.140 2.452 3.142 3.125e+00 3.142 2.452 3.142 3.125e+00 3.142 3.072 2.924 3.115 3.115 2.737 2.737 2.038 2.038 3.138e+00 3.138 3.142 3.142 2.846e+00 2.846e+00 2.395 2.899 2.314 3.103 2.775 2.762

# To set matrix elements from aggregate fit results, use `seetAggMatE` for Pandas
data.setAggMatE(simpleForm = True)
data.data['agg']['matEpd']

Set reformatted aggregate data to self.data[agg][matEpd].
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Type m n p pc comp compC labels
Cont l m mu
AG 0 0 -1 1.179 0.187 1.357 0.000 0.250+1.152j 0.187+0.000j 0,0

1 1.179 0.187 -2.978 1.483 -1.163-0.192j 0.016+0.186j 0,0
2 0 -1 0.859 0.130 1.648 2.132 -0.066+0.857j -0.069+0.110j 2,0

1 0.859 0.130 -1.497 0.747 0.063-0.857j 0.095+0.088j 2,0
-2 -1 1.635 0.254 -0.357 1.267 1.532-0.571j 0.076+0.243j 2,-2

1 1.635 0.254 0.413 1.682 1.497+0.656j -0.028+0.253j 2,-2
2 -1 1.635 0.254 -0.357 1.267 1.532-0.571j 0.076+0.243j 2,2

1 1.635 0.254 0.413 1.682 1.497+0.656j -0.028+0.253j 2,2
4 0 -1 0.756 0.124 0.792 0.727 0.531+0.538j 0.093+0.082j 4,0

1 0.756 0.124 1.156 1.762 0.305+0.692j -0.024+0.122j 4,0
-2 -1 0.539 0.075 0.366 1.662 0.503+0.193j -0.007+0.075j 4,-2

1 0.539 0.075 0.552 1.378 0.459+0.283j 0.014+0.074j 4,-2
2 -1 0.765 0.124 -0.060 2.062 0.764-0.046j -0.058+0.109j 4,2

1 0.765 0.124 1.382 1.406 0.144+0.752j 0.020+0.122j 4,2
-4 -1 0.539 0.075 0.366 1.662 0.503+0.193j -0.007+0.075j 4,-4

1 0.539 0.075 0.552 1.378 0.459+0.283j 0.014+0.074j 4,-4
4 -1 0.765 0.124 -0.060 2.062 0.764-0.046j -0.058+0.109j 4,4

1 0.765 0.124 1.382 1.406 0.144+0.752j 0.020+0.122j 4,4
6 0 -1 1.127 0.166 0.196 1.431 1.105+0.220j 0.023+0.165j 6,0

1 1.127 0.166 0.708 2.133 0.856+0.733j -0.089+0.141j 6,0
B1G 2 -2 -1 0.993 0.139 0.453 2.561 0.892+0.435j -0.116+0.076j 2,-2

1 0.993 0.139 0.453 2.561 0.892+0.435j -0.116+0.076j 2,-2
2 -1 0.993 0.139 0.574 0.910 0.833+0.539j 0.085+0.110j 2,2

1 0.993 0.139 0.574 0.910 0.833+0.539j 0.085+0.110j 2,2
4 -2 -1 0.127 0.022 -1.190 1.015 0.047-0.118j 0.012+0.019j 4,-2

1 0.127 0.022 -1.190 1.015 0.047-0.118j 0.012+0.019j 4,-2
2 -1 0.326 0.048 -0.260 1.241 0.315-0.084j 0.015+0.045j 4,2

1 1.295 0.198 -0.260 1.241 1.251-0.333j 0.064+0.187j 4,2
-4 -1 0.127 0.022 0.618 1.354 0.104+0.074j 0.005+0.022j 4,-4

1 0.127 0.022 0.618 1.354 0.104+0.074j 0.005+0.022j 4,-4
4 -1 0.326 0.048 0.082 0.960 0.325+0.027j 0.027+0.039j 4,4

1 0.326 0.048 0.082 0.960 0.325+0.027j 0.027+0.039j 4,4
B2G 2 -1 0 0.788 0.128 0.187 1.193 0.774+0.147j 0.047+0.119j 2,-1

1 0 0.788 0.128 0.778 2.093 0.561+0.553j -0.064+0.111j 2,1
4 -1 0 0.457 0.067 -0.706 1.496 0.348-0.297j 0.005+0.066j 4,-1

1 0 0.837 0.121 0.273 2.341 0.806+0.225j -0.084+0.087j 4,1
-3 0 0.457 0.067 -1.739 1.719 -0.076-0.451j -0.010+0.066j 4,-3
3 0 0.837 0.121 -0.442 1.473 0.757-0.358j 0.012+0.121j 4,3

# To set matrix elements from aggregate fit results, use `aggToXR` for Xarray
# data.aggToXR(refKey = 'orb5', returnType = 'ds', conformDims=True) # use full ref␣

↪dataset
data.aggToXR(refKey = 'subset', returnType = 'ds', conformDims=True) # Subselected␣

↪matE

Added dim Total
Added dim Targ
Added dim Total
Added dim Targ

(continues on next page)
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(continued from previous page)

Set XR dataset for self.data['agg']['matE']

13.8.1 Density matrices

New (experimental) code for density matrix plots and comparison. See Sect. 6.4 for discussion. Code adapted from
the PEMtk documentation [20] MF reconstruction page, original analysis for Ref. [3], illustrating the 𝑁2 case. If the
reconstruction is good, the differences (fidelity) should be on the order of the experimental noise level/reconstruction
uncertainty, around 10% in the case studies herein; in general the values and patterns of the matrices can also indicate
aspects of the retrieval that worked well, or areas where values are poorly defined/recovered from the given dataset.

13.8.2 Plot MF PADs

Routines below adapted from the PEMtk documentation [20] MF reconstruction data processing page (original analysis
page for Ref. [3], illustrating the 𝑁2 case). The routines include calls to self.mfpadNumeric() for numerical
expansion of the MF-PADs, and self.padPlot() for plotting. Results are illustrated for the retrieved and reference
cases in Fig. 13.4 and Fig. 13.5 respectively, and the differential results (reference minus fitted results) in Fig. 13.6.

192 Chapter 13. Case study: Generalised bootstrapping for a general asymmetric top scattering
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https://pemtk.readthedocs.io
https://pemtk.readthedocs.io/en/latest/topical_review_case_study/matrix_element_extraction_MFrecon_PEMtk_180722-dist.html#Density-matrix-plotting
https://pemtk.readthedocs.io
https://pemtk.readthedocs.io/en/latest/topical_review_case_study/MFPAD_replotting_from_file_190722-dist.html
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Fig. 13.3: Density matrix comparison - rows show (a) reference case (with signs of phases removed), (b) reconstructed
case, (c) differences. Columns are (left) imaginary component, (right) real component. If the reconstruction is good, the
differences (fidelity) should be on the order of the experimental noise level/reconstruction uncertainty, around 10% in the
case studies herein.13.8. Using the reconstructed matrix elements 193
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Fig. 13.4: MF-PADs computed from retrieved matrix elements for (𝑥, 𝑦, 𝑧, 𝑑) polarization geometries, where 𝑑 is the
“diagonal” case with the polarization axis as 45 degrees to the 𝑧-axis.

Fig. 13.5: MF-PADs computed from reference ab initio matrix elements for (𝑥, 𝑦, 𝑧, 𝑑) polarization geometries, where 𝑑
is the “diagonal” case with the polarization axis as 45 degrees to the 𝑧-axis.

Fig. 13.6: MF-PADs differences between retrieved and reference cases for (𝑥, 𝑦, 𝑧, 𝑑) polarization geometries, where 𝑑
is the “diagonal” case with the polarization axis as 45 degrees to the 𝑧-axis. Note diffs are normalised to emphasize the
shape, but not mangnitudes, of the differences - see the density matrix comparisons for a more rigourous fidelity analysis.
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CHAPTER

FOURTEEN

CASE STUDIES: SUMMARIES, CONCLUSIONS AND OUTLOOK

In the preceding chapters, three case studies were demonstrated. As already noted elsewhere (Chpt. 8), the 𝑁2 case has
already been demonstrated to be successful for a range of energies and ionization channels (orbitals), see Refs. [1, 3]
for further details. However, it is included here as a benchmark case, useful for testing the methodology, computational
routines and limitations and so forth. In particular, it represents a case of a reasonable level of complexity for method
development, without an excessive number of radial matrix elements/fitting parameters to deal with.
The other two case studies (Chpt. 12 & Chpt. 13) are presented in a more experimental/preliminary capacity. In both
cases, a much larger number of radial matrix elements are required, and a higher-information content dataset with 3D
alignment (as tested) and/or multiple polarization geometries, is expected to be required for a high-fidelity bootstrap
retrieval protocol to be successful. In the current cases as presented, some progress towards this has been achieved,
although further work remains to improve on the current results. Nonetheless, as stated previously, these new results are
interesting and present a stepping-stone for studies on radial matrix elements retrieval in complex systems, and a launching
point for similar studies.

14.1 General notes on fitting methodologies for the case studies

As discussed elsewhere, the general bootstrap retrieval protocol is quite flexible. In the case studies, much of this flexibility
is yet to be explored! This is, primarily, a question of the time and effort available: for the𝑁2 case obtaining a set of 1000
fit results takes approximately 2 hours on a workstation.1 However, scaling up to more complex cases is significantly more
costly, with 𝑂𝐶𝑆 and 𝐶2𝐻4 results requiring approximately 1-2 orders of magnitude more computational time - on the
order of days per few hundred fits. Work towards speeding up fitting, e.g. using GPU-based routines and/or lower-level
code for speed, is ongoing. Deployment to high-performance computing (HPC) resources, e.g. clusters, is also ongoing.
The results herein, therefore, represent only the preliminary stages of testing and tuning the bootstrap retrieval protocol
for these more complex cases, but already appear quite promising.
In each case, as detailed in Chpt. 9 & Chpt. 10, the fitting basis sets were created based on ab initio results, with all radial
matrix elements greater than a threshold value of 0.01 used for both simulated data generation and fitting, and automatic
parameter constraints applied to reduce the effective number of “free” or “floated” terms in the fitting. Fitting was only
tested for single energy-points. The overall size of the problems as run in this manner were:

Sys-
tem

Sym-
metry

Energy
(eV)

Complex matrix ele-
ments

Fitting
params

Floated params (magnitude,
phase)

𝑡-
points

𝑁2 𝐷∞ℎ 1 6 12 4,3 13
𝑂𝐶𝑆 𝐶∞𝑣 10 22 44 15,14 51
𝐶2𝐻4 𝐶2ℎ 6 38 76 14,25 73
1 Running on 20 (logical) cores of an AMD Threadripper 2950X based workstation, this required 5 GB of RAM and took on the order of 2 hours,

although note that the time per fit cycle had large variance, since convergence time depends on the start parameters. Further benchmarks for the current
codebase can be found in the PEMtk documentation [20].
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In both of the more complex cases, the computational testing involved starting with the protocol as used for the 𝑁2
reference case, then adding data points until clustering was observed in the 𝜒2 histograms, indicating that multiple minima
were successfully located. This is a necessary first step in testing, and signifies that themethodology is working as expected;
however, this is not sufficient to guarantee that the information content of the dataset was adequate for complete radial
matrix elements retrieval, nor to guarantee a high-fidelity retrieval (herein “complete” is used to indicate that a unique set
of fit parameters may be found, whilst the “fidelity” is the more stringent test of the veracity of these parameters). In
fitting, automatic parameter relations were set, which fixed equivalent parameters (see Chpt. 9 & Chpt 10 for details).
For 𝑁2 and 𝑂𝐶𝑆 no additional constraints were imposed; for 𝐶2𝐻4 some additional magnitude-only constraints were
set for parameters with identical magnitudes which were not set by the automated routine, although corresponding phase
relations were not set (see tabulations in Chpt. 12 for full details) - this case is therefore an interesting test of whether the
correlated phase relations will be correctly recovered by the bootstrap retrieval protocol. It is, however, anticipated that for
high-fidelity retrieval, additional constraints may be required on a case-by-case basis, and particularly for large problems,
e.g. by fixing additional symmetry relations, making use of additional data and so forth - this is discussed further below.
In each case, the lowest 𝜒2 cluster was assumed to be the “best” result, i.e. the true set of radial matrix elements, and
further tested for spread and veracity, as compared with the known inputs. This is an easy methodology to implement
computationally although, in general, one may wish to inspect several sets of candidate fit parameters in cases with noise
and/or large solution spaces, since the lowest 𝜒2 may not, in fact, be the best, and a true global minima may not exist.
Similarly, the presence of multiple equivalent minima is possible in cases where some quantities are undefined, which
may lead to issues with phase retrieval in particular (see Quantum Metrology Vols. 1 & 2 [4, 9] for further discussion) -
with the current codebase this can be probed by changing the binning of candidate fit results, and examining the spread
of parameters for a given choice of binning, as outlined in the case studies. (In the case studies, the retrieved matrix
elements are taken as an average over the best cluster of fits, hence large spread in a given parameter for the chosen
cluster indicates a case where the given parameter is not well defined - this is likely to appear as a clear deficiency in the
corresponding density matrix and/or MF-PADs when assessing the fidelity of the retrieval.) The likelihood of a good fit
result will also depend on the number of data-points used in fitting, as well as the underlying alignment and molecular
symmetry properties - generally the form of the channel functions as discussed in Sect. 6.3 - which have not been carefully
investigated in these cases as yet.
For the 𝑁2 case, the RWP is as detailed in Refs. [1, 3], which made use of a two-pulse alignment scheme. Data-points
over the RWP half-revival feature were chosen initially to approximately match the previously published cases (13 𝑡-points
in the current case, vs. 11 in the original study, although that study also made use of larger datasets up to 89 𝑡-points for
higher-fidelity bootstrap retrieval protocol, see Ref. [1] supplementary materials for further details).
For the 𝑂𝐶𝑆 case, the RWP is as per obtained in recent ultrafast experiments [144], which made use of a single-pulse
alignment scheme to prepare a 1D molecular alignment (no orientation). For testing purposes, an (arbitrary) number of
low-order terms 𝑄 ≠ 0 and 𝑆 ≠ 0 were added for the work herein (with a linear ramp in 𝑡), including 𝐾 = 1 terms for
orientation (see figures in Chpt. 12 for full details). Although these are not expected to be physically realistic, they will be
indicative of the terms present in a true 3D alignment case. Note that the temporal data used in this case is discontinuous,
with 𝑡-points over both the 1/4 and 1/2 RWP revival features selected.
For the 𝐶2𝐻4 case, the RWP is a realistic case, as used in Ref. [98], which includes 𝑆 ≠ 0 terms and even-𝐾 even-𝑆
terms (see figures in Chpt. 13 for full details). Interestingly, this case was sufficient for retrieval of MF-PADs using the
matrix-inversion method, so is expected to be successful with the bootstrap retrieval protocol provided enough data-points
are incorporated and the fitting is well-constrained. Note that the temporal axis in this case is in arbitrary units.
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14.2 Retrieval fidelity

The continuum density matrices provide a way to quickly assess the bootstrap retrieval protocol fidelity in these test
cases, without the necessity of consulting rather complex tabulations of radial matrix elements/fitting parameters and the
associated statistics. In general, it is expected that the differences between the true and reconstructed density matrices will
be on the order of the experimental noise in a high-fidelity case. For each case study, such a comparison is given - see
Fig. 11.3 (𝑁2 case), Fig. 12.3 (𝑂𝐶𝑆 case), and Fig. 13.3 (𝐶2𝐻4 case) (see Quantum Metrology Vol. 3 (HTML version)
for interactive plots). Note that in the comparisons herein the sign of the phases is assumed to be undefined, so phases
are remapped to positive values only (i.e. assumed to be in the 0 ∶ 𝜋 range). Depending on the symmetry of the problem
(hence the form of the channel functions), this may or may not be the case in practice - in particular cases with multiple
polarisation geometries and/or 3D alignment may break this assumption.
For𝑁2, the recovered and reference density matrices are in good agreement, and differences in both the real and imaginary
components are on the order of the noise-floor in the simulated dataset (≈ ±10%). This indicates a high-fidelity retrieval
from only a small number of data-points (13 in the example case), and also indicates that improvements may be found
here by incorporating additional data into the fitting procedure.
For 𝑂𝐶𝑆 (Fig. 12.3) and 𝐶2𝐻4 (Fig. 13.3) cases, a number of general comments may be made. Firstly, the overall
patterns of values observed in the reconstructed density matrices are in good agreement with the reference cases, however
the agreement in the absolute values (hence fidelity) are quite variable. For 𝑂𝐶𝑆 differences as large as 0.4 are observed,
whilst for 𝐶2𝐻4 differences as large as 1 are observed. Secondly, some patterns are inverted in the retrieved cases,
indicating issues with the signs of the retrieved quantities. This is likely indicative of missing phase relations in the data
(i.e. the channel functions restrict the accessible terms), or indicates that multiple minima exist in the 𝜒2 hypersurface
with differences in the phases. Thirdly, the retrieved radial matrix elements tend to have, in general, larger values in both
real and imaginary components for the higher-order terms (larger 𝑙) than the reference values: this can be seen in the
fading (vignetting) of the colourmaps to higher-order in the reference cases, which is not present in the retrieved maps.
In general, these issues all suggest that the bootstrap retrieval protocol is partially working for these cases, but may not yet
be complete. A number of avenues remain to be explored here, in particular:

• The analysis of other candidate parameter sets to check for uniqueness/equivalence.
– This may required deeper analysis of the existing results with finer 𝜒2 binning than the current cases, which
indicate significant spreading in some parameters (see the Raw results and Phases subsections in each case
study chapter, particularly the paramter plots which indicate the spread in results).

– This analysis is not yet automated, but this may be possible by setting preferences on spreading of results to
determine optimum grouping of results.

• Further boostrapping with larger datasets and/or using the existing best fit parameters as seed values to further
probe the local 𝜒2 surface.

• Fitting with reduced parameter sets. These were set based on the reference matrix elements with a threshold for
inclusion of 0.01 (see Chpt. 10), but raising this to 0.1 would remove many of the higher-order terms from the
fitting, which may result in higher-fidelity retrieval of the lower-order terms which then remain.

• Fitting with more constraints, e.g.
– Setting lower limits on higher-order terms. Although, in practice, this may not be known a priori for a given
case, as a general rule-of-thumb it should be applicable (as indicated by the ab initio results for the cases
herein).

– Enforcing orthogonality on different continua, as per the symmetrized harmonics defining each case. For the
𝐶2𝐻4 case in particular, this would add additional phase restrictions which were missing in the current study.

• Further testing with simulated data with both more and less noise present to evaluate the effect of the noise-floor
in different cases.

• Finally, it is of note (and also noted elsewhere) that there may still be bugs or numerical issues with the preliminary
results presented herein, since they represent the first trials of the PhotoelectronMetrology Toolkit [5] and bootstrap

14.2. Retrieval fidelity 197

https://phockett.github.io/Quantum-Metrology-with-Photoelectrons-Vol3
https://github.com/phockett/PEMtk


Quantum Metrology with Photoelectrons Vol. 3 *Analysis methodologies*

retrieval protocol for complex cases. However, given that the same routines are used to generate the simulated data,
any issues should, at least, be self-consistent for these test cases. Eagle-eyed readers may notice that in the 𝐶2𝐻4
test case, the 𝛽0,0(𝑡) parameters are negative, which is unphysical; this indicates a phase error in the calculation
and has since been fixed, but does not affect the fitting protocol thanks to the self-consistent nature of the numerics.

14.3 MF-PAD retrieval

The MF-PADs also provide an interesting observable to test from the retrieved radial matrix elements - they provide
less detail than the density matrices, but do give a better indication of the sensitivity of the observables to the retrieved
parameters (via the channel functions) in a given case. For example, some phase relations may not be important for MF
retrieval, or only appear under certain polarization geometries. For both the 𝑁2 and 𝐶2𝐻4 cases the work in Ref. [98]
provides an interesting perspective here, since it outlines a directMF reconstruction method which bypasses the difficulty
of phase-retrieval and fitting via a matrix-inversion protocol. This is found to work well for both these cases, although in
a similar manner to a fitting approach will be fundamentally limited in any given case by the symmetry of the problem.
For the case studies, the reconstructedMF-PADs are somewhat variable, asmay be expected from the preceding discussion
on fidelity. For 𝑁2 (Fig. 11.4 - Fig. 11.6), the results are excellent - as expected from the previous studies in this case. In
particular, the good agreement for the diagonally-polarized case indicates that the relative phase between the two continua
is defined in this type of data, and successfully retrieved. The normalised difference plots in Fig. 11.6 indicate that the
main differences between the retrieved and reference cases can be observed in some of the smaller lobes, indicating that
the fidelity is high, but not perfect. As discussed in the previous section, adding data and analysing the effect of noise on
the bootstrap retrieval protocol may improve on the retrieval fidelity, and this was previously explored for 𝑁2 in Ref. [1].
For the more complex cases, the fidelity is lower, and the results generally suggest that, although the dominant continuum
is fairly well recovered, the loss of phase information and/or generally lower information content of the data is an issue.
For 𝑂𝐶𝑆 (Fig. 12.4 - Fig. 12.6), the (𝑥, 𝑦) MF-PADs are close to the reference case, although the lobes are significantly
sharper. The 𝑧 case, however, is very different, with the main lobe in the −𝑧 direction, as opposed to +𝑧 in the reference
case. This indicates that the terms related to breaking up-down symmetry are not well reproduced in this case, and is
most likely an issue with the associated phases; as noted above this may be due to issues with the analysis and binning of
the fit results, or a more fundamental limitation due to the dataset and/or symmetry of the problem - potentially with the
choice of additional terms added to the ADMs - and more work is required here to ascertain this.
For 𝐶2𝐻4 (Fig. 13.4 - Fig. 13.6), the opposite is true: the 𝑧 case is fairly well reproduced, although rotated, whilst the
(𝑥, 𝑦) cases are in poor agreement with the reference results. Again it is the dominant continuumwhich is best reproduced;
however, in this case the discrepancies in all polarization geometries appear as additional symmetry breaking, which would
not be present in the correctly symmetrized (orthogonal continua) case - as seen in the reference results (Fig. 13.5). This
indicates that the respective continua are not well-separated in the recovered radial matrix elements, i.e. the phase relations
are such that additional symmetry breaking is seen. As for the 𝑂𝐶𝑆 case, this may be due to averaging over multiple
minima in the fitting phase space, and/or may relate to a lack of information in the test dataset. In this case, given the
results of Ref. [98], it is anticipated that the dataset is sufficient, and that most issues arise from the complexity of the 𝜒2

hypersurface and the configuration of the bootstrap retrieval protocol, and/or post-processing of the results. As discussed
above, in the current test case some phase relationships between parameters were not constrained, and this is likely the
main source of the discrepancy; ideally the fitting should recover these relations in general, but this will, again, depend on
the form of the channel functions and the dataset used, which will ultimately determine which phase relations are defined
and therefore recoverable. Probing this behaviour in general, and in this case, in more depth is currently underway. One
way to probe this type of issue further is to define specific orthogonality relations in the fitting procedure via symmetrized
matrix elements. This would provide a means to enforce the distinction between the continua without the necessity of ab
initio radial matrix elements (this is possible with the current codebase, but has not been explored for this case as yet).
This would also be consistent with the success of the approach in Ref. [98], since symmetry is rigorously enforced in the
mathematics of the matrix-inversion method.
In all cases, the “diagonal” polarization case is another good test of the phase relations, since this is also sensitive to the
phase relations between the 𝑧 and (𝑥, 𝑦) continua. For 𝑁2 the good agreement of the results with the reference case is,
again, indicative of the generally good fidelity of the reconstruction in this case. Similarly, the differences in the more
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complex 𝑂𝐶𝑆 and 𝐶2𝐻4 cases are consistent with the previous discussion: the main difference between these cases is
the additional symmetry breaking in the lower-symmetry 𝐶2𝐻4 case, leading to the appearance of an overall rotation and
additional lobes, particularly directed out of the (𝑥, 𝑧) plane, relative to the reference case. Again, this is indicative of
continua mixing, arising from incorrect/undefined/low-fidelity phase terms.

14.4 Conclusions and outlook

Overall, the case studies provide interesting material for a number of reasons. First and foremost, they indicate that
the bootstrap retrieval protocol method is applicable to larger problems (38 radial matrix elements in the largest case), at
least in principle. Secondly, they indicate the issues in these cases, which still remain exceedingly complicated retrieval
problems, despite the generality and automation of the bootstrap retrieval protocol implemented in the Photoelectron
Metrology Toolkit [5]. In these specific cases the route to complete and/or higher-fidelity bootstrap retrieval protocol is
clear, but significant efforts are still required to conclusive demonstrate this, and develop more efficient and effective fitting
strategies for large solution hyperspaces. Nonetheless, this is an interesting and notable step towards a general method
for these problems, and (equivalently) density matrix retrieval and general quantum tomography on larger systems (e.g.
38x38 density matrix retrieval in the 𝐶2𝐻4 case).
Future work is planned to look at these specific problems in more detail, including different energy regions and ionization
channels, and other small molecules. As part of this effort, HPC resources will be used to allow for scaling up of the
computational effort available, and development of the Photoelectron Metrology Toolkit [5] and ePSproc codebase [33,
34, 35] will continue in tandem with these efforts. Fitting strategies, algorithms and methodologies also remain as a large
area to be explored, in particular cross-fertilization from other fields dealing with large computational hyperspaces and
complex phase-retrieval problems is expected to (continue) to prove fruitful (see Quantum Metrology Vols. 1 & 2 [4, 9]
and Ref. [3] for futher discussion along these lines).
As discussed in Chpt. 5.1, it is also hoped that the efforts on the code-development side of the problem, including the
case studies presented herein, the open-source nature of the work, and the easy deployment of the full software stack via
Docker, will all encourage other researchers tomake use of these tools, andmake further developments to themethodology
and platform. Given the complex nature of both the core physics, data processing, simulation and phase retrieval problems,
there are still many avenues to explore, but hopefully the barrier to entry is now significantly lowered.
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CHAPTER

SIXTEEN

GLOSSARY

MF
Molecular frame (MF) - coordinate system referenced to the molecule, usually with the z-axis corresponding to the
highest symmetry axis. See Sect. 6.3.3 for further details.

LF
Laboratory or lab frame (LF) - coordinate system referenced to the laboratory frame, usually with the z-axis cor-
responding to the laser field polarization. For circularly or elliptically polarized light the propagation direction is
conventionally used for the z-axis. In some cases a different z-axis may be chosen, e.g. as defined by a detector.
See Sect. 6.3.3 for further details.

AF
Aligned frame (AF) - coordinate system referenced to molecular alignment axis or axes. For 1D alignment, the z-
axis usually corresponds to the alignment field polarization, and hencemay be identical to the standard LF definition,
although is usually reserved for use in cases where there is some molecular alignment. For the limiting case of an
isotropic distribution, the AF and (traditional) LF are identical. For high degrees of (3D) alignment the AF may
approach theMF in the ideal case, although will usually be limited by the symmetry of the system. See Sect. 6.3.3
for further details.

PADs
Photoelectron angular distributions (PADs), often with a prefix denoting the reference frame, e.g. LFPADs, MF-
PADs (sometimes also hypenated, e.g. LF-PADs). Usage is often synonymous with the associated anisotropy
paramters (or “betas”).

anisotropy paramters
Expansion parameters 𝛽𝐿,𝑀 for an expansion in spherical harmonics (or similar basis sets of angular momentum
functions in polar coordinates), e.g. Eq. (6.37). Often referred to simply as “beta parameters”, and may be
dependent on various properties, e.g. 𝛽𝐿,𝑀(𝜖, 𝑡...). Herein upper-case 𝐿, 𝑀 usually refer to observables or the
general case, whilst lower-case (𝑙, 𝑚) usually refer specifically to the photoelectron wavefunction partial waves (see
partial-wave expansion), and (𝑙, 𝜆) usually denote these terms referenced specifically to the molecular frame.

ADMs
Expansion parameters 𝐴𝐾

𝑄,𝑆(𝑡) for describing a molecular ensemble alignment described as a set of axis distribu-
tion moments, usually expanded as Wigner rotation matrix element, spherical harmonics or Legendre polynomial
functions. See Sect. 6.5 for details.

axis distribution moments
See ADMs.

MS
Molecular symmetry group. Symmetry group classification of a molecule, isomorphic to the point group in rigid
molecules. See Bunker and Jensen [89] for discussion.

PG
Point group. Symmetry group classification of a molecule, strictly only applicable to rigid systems. See MS for
more general case.
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HOMO
Highest occupied molecular orbital. Short-hand for the outermost (highest energy) valence orbital, also often used
in the form HOMO-n to number lower-lying orbitals in reverse energetic order, e.g. HOMO-1 for the penultimate
valence orbital.

VMI
Velocity-map imaging. Experimental technique for measuring energy and angle-resolved photoelectron “images”.

RWP
Rotational wavepacket. A purely rotational wavepacket (superposition of rotational eigenstates) in a molecular
system, typically created via cascaded Raman interaction with a (relatively) strong IR pulse (> 1012~Wcm−2).
The resulting time-dependent molecular axis distribution can be described by a set of ADMs.

partial-wave expansion
General term for an expansion of a wavefunction in a spherical-wave basis in scattering theory, typically spherical
harmonics𝑌𝑙,𝑚, where the spherical harmonics are the partial wave basis set, and specific𝜓𝑙,𝑚 terms can be referred
to as partial waves - see for example Refs. [145, 146, 147]. Note conventional use of lower-case 𝑙, 𝑚 for these
components, whilst upper-case 𝐿, 𝑀 are usually used for labelling harmonics pertaining to observable quantities
(see anisotropy paramters).

partial-waves
See partial-wave expansion.

channel functions
Geometric (angular-momentum) coupling parameters in the tensor formulation of photoionzation, denoted by
Υ

𝑢,𝜁𝜁′

𝐿,𝑀 herein. See Eq. (6.13). These can be regarded as an alternative form of the more traditional geomet-
ric coupling parameters (Eq. (6.9)). See also geometric coupling parameters.

geometric coupling parameters
Geometric (angular-momentum) coupling parameters in photoionization, comprising all angular-momentum cou-
pling terms. Denoted 𝛾𝑙,𝑚 herein (Eq. (6.6)), and 𝛾𝛼𝛼+𝑙𝜆𝑚𝑙′𝜆′𝑚′ for the coherent square of these terms (Eq.
(6.9)). See also channel functions.

radial matrix elements
General term for the radial part of the ionization matrix elements, after separation into radial and angular parts.
Although this type of separation may be applied in many cases, herein this term always refers specifically to the
radial (or reduced) photoionization dipole matrix elements. These are denoted herein as r𝑘,𝑙,𝑚 (see Eqs. (6.6), (6.7)),
and also appear as 𝕀𝜁𝜁′ for the coherent square of these terms in the channel functions (tensor) form, see Eq. (6.13).
These complexmatrix elements are the unknowns to be determined in quantummetrology with photoelectons fitting
or reconstruction problems.

symmetrized harmonics
A basis set of spherical harmonics expanded/defined for a given point-group symmetry. See Sect. 6.6.2, particu-
larly Eq. (6.37), for details. Other symmetrized functions may assume such a basis set, or explicitly incorporate
symmetry parameters/weightings directly, as is the case for symmetrized radial matrix elements which incorporate
symmetry parameters 𝑏Γ𝜇

ℎ𝑙𝜆 into the value of the matrix elements.
frame rotation

General term for the rotation of one frame of reference (corresponding to a set of 𝑥, 𝑦, 𝑧 axes), e.g. as defined by
an electric field vector in the laboratory, to another, e.g. as defined by a molecular axis. Usually specified herein
in terms of a set of Euler angles 𝑅�̂� = {𝜒, Θ, Φ}, and can also be schematically denoted as, e.g., (𝑥, 𝑦, 𝑧) ←
(𝑥′, 𝑦′, 𝑧′).

Euler angles
A set of angles 𝑅�̂� = {𝜒, Θ, Φ} defining a frame rotation. For discussion see Wikipedia[148] and Zare, Chpt. 3
[83].

Wigner rotation matrix elements
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A function defining a basis set for rotations in three-dimensions (𝑆𝑂(3)). Also known as “Wigner D-matrix ele-
ments”. For discussion see Wikipedia[149] and Zare, Chpt. 3 [83].

molecular alignment
General term for describing the case where molecules have some alignment in the LF, as compared to an isotropic
distribution. Defined herein terms of molecular axis distribution moments and associated parameters 𝐴𝐾

𝑄,𝑆(𝑡). See
Sect. 6.5 for details.

bootstrap retrieval protocol
General term of a retrieval method which determines successively more complex properties of a system in multiple
steps, each of which builds on the previous step and adds complexity. Herein, used for the “generalised bootstrap-
ping” method for radial matrix elements retrieval from photoionzation data. For general useage, see wikipedia’s
Bootstrapping page.
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CHAPTER

SEVENTEEN

BUILD VERSIONS AND CONFIG TESTS

17.1 Versions

import scooby
scooby.Report(additional=['pemtk','epsproc','xarray', 'pandas', 'scipy', 'matplotlib',

↪'jupyterlab','plotly','holoviews'])

* sparse not found, sparse matrix forms not available.
* natsort not found, some sorting functions not available.
* Setting plotter defaults with epsproc.basicPlotters.setPlotters(). Run directly␣

↪to modify, or change options in local env.
* Set Holoviews with bokeh.
* pyevtk not found, VTK export not available.

OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_
↪levels instead.

--------------------------------------------------------------------------------
Date: Thu Dec 07 11:23:26 2023 EST

OS : Linux
CPU(s) : 64

Machine : x86_64
Architecture : 64bit

RAM : 62.8 GiB
Environment : Jupyter
File system : btrfs

Python 3.10.11 | packaged by conda-forge | (main, May 10 2023, 18:58:44)
[GCC 11.3.0]

pemtk : 0.0.1
epsproc : 1.3.2-dev
xarray : 2022.3.0
pandas : 1.5.3
scipy : 1.10.1

matplotlib : 3.5.3
jupyterlab : 3.6.3

plotly : 5.15.0
holoviews : 1.16.2

numpy : 1.23.5
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IPython : 8.13.2
scooby : 0.7.2

--------------------------------------------------------------------------------

!jupyter-book --version

Jupyter Book : 0.15.1
External ToC : 0.3.1
MyST-Parser : 0.18.1
MyST-NB : 0.17.2
Sphinx Book Theme : 1.0.1
Jupyter-Cache : 0.6.1
NbClient : 0.7.4

!jupyter --version

Selected Jupyter core packages...
IPython : 8.13.2
ipykernel : 6.23.0
ipywidgets : 8.0.6
jupyter_client : 8.2.0
jupyter_core : 5.3.0
jupyter_server : 2.5.0
jupyterlab : 3.6.3
nbclient : 0.7.4
nbconvert : 7.4.0
nbformat : 5.8.0
notebook : 6.5.4
qtconsole : not installed
traitlets : 5.9.0

17.2 Docker build env

# Container name from within running container (from https://stackoverflow.com/a/
↪64790547)

!dig -x `ifconfig eth0 | grep 'inet' | awk '{print $2}'` +short | cut -d'.' -f1

QM3-jupyterlab-local-190723
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17.3 Book versions

QMpath = '/home/jovyan/QM3'
!git -C {QMpath} branch
!git -C {QMpath} log --format="%H" -n 1

gh-pages
main

* postSubmissionUpdates
reviewJuly2023

7ef784d423d4225e715ff567a101b22815635eef

# Check current remote commits
!git ls-remote --heads https://github.com/phockett/Quantum-Metrology-with-

↪Photoelectrons-Vol3

e791590f875cde788620591fcc6fc47c409b92e7 refs/heads/gh-pages
8fba30f39135996a784b7d030cf908d63b484249 refs/heads/main
7ef784d423d4225e715ff567a101b22815635eef refs/heads/postSubmissionUpdates
863f1a92533b5ced778b263cd00f09ae3cfc9eb3 refs/heads/reviewJuly2023

17.4 Github pkg versions

from pathlib import Path
import epsproc as ep
ep.__file__

'/home/jovyan/github/ePSproc/epsproc/__init__.py'

import pemtk as pm
pm.__file__

'/home/jovyan/github/PEMtk/pemtk/__init__.py'

# Check current Git commit for local ePSproc version - NOTE THIS ONLY WORKS FOR␣
↪INSTALLED FROM GIT CLONES

# from pathlib import Path
# import epsproc as ep
!git -C {Path(ep.__file__).parent} branch
!git -C {Path(ep.__file__).parent} log --format="%H" -n 1

* 3d-AFPAD-dev
c1eedf10631cb17fe33421427c195a2391369c37

# Check current remote commits
!git ls-remote --heads https://github.com/phockett/ePSproc
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c1eedf10631cb17fe33421427c195a2391369c37 refs/heads/3d-AFPAD-dev
897d73392a7b32ffba4ca6b6b4755c61e7c1c8d7 refs/heads/dependabot/pip/notes/

↪envs/envs-versioned/certifi-2022.12.7
457f8cd85d89bd6474296b6c01e5165a4a7ce7fc refs/heads/dependabot/pip/notes/

↪envs/envs-versioned/cryptography-39.0.1
2855573d0f088b45d19acf2fd9a71eeb7af0a29b refs/heads/dependabot/pip/notes/

↪envs/envs-versioned/ipython-8.10.0
92c661789a7d2927f2b53d7266f57de70b3834fa refs/heads/dependabot/pip/notes/

↪envs/envs-versioned/mistune-2.0.3
fe1e9540c7b91fe571f60562acd31d8e489d491e refs/heads/dependabot/pip/notes/

↪envs/envs-versioned/nbconvert-6.5.1
70b80a1e3a54de91c2bfe3b6be82d611fcfd5f43 refs/heads/dependabot/pip/notes/

↪envs/envs-versioned/pillow-9.3.0
92fc79b09aafedadcb645f88bb7ed771c96d5b52 refs/heads/dependabot/pip/notes/

↪envs/envs-versioned/setuptools-65.5.1
fa33ed8d63a5c4a4043cc4c261059cc09e4c2bf7 refs/heads/dependabot/pip/notes/

↪envs/envs-versioned/wheel-0.38.1
41cdfe43750e08c510f98b05e024a9c62da42771 refs/heads/dependabot/pip/

↪setuptools-65.5.1
7e4270370d66df44c334675ac487c87d702408da refs/heads/dev
1c0b8fd409648f07c85f4f20628b5ea7627e0c4e refs/heads/master
69cd89ce5bc0ad6d465a4bd8df6fba15d3fd1aee refs/heads/numba-tests
ea30878c842f09d525fbf39fa269fa2302a13b57 refs/heads/revert-9-master
baf0be0c962e8ab3c3df57c8f70f0e939f99cbd7 refs/heads/testDev

# Check current Git commit for local ePSproc version - NOTE THIS ONLY WORKS FOR␣
↪INSTALLED FROM GIT CLONES

# from pathlib import Path
# import epsproc as ep
!git -C {Path(pm.__file__).parent} branch
!git -C {Path(pm.__file__).parent} log --format="%H" -n 1

* master
465c161ca9d2c2f453a58f16c8f334f5e2c07eaa

# Check current remote commits
!git ls-remote --heads https://github.com/phockett/PEMtk

465c161ca9d2c2f453a58f16c8f334f5e2c07eaa refs/heads/master
3f4686dffdbb310f15692f978ba36d6a3d15e8d3 refs/heads/mfFittingDev

17.5 Full conda env

!conda list

# packages in environment at /opt/conda:
#
# Name Version Build Channel
_libgcc_mutex 0.1 conda_forge conda-forge
_openmp_mutex 4.5 2_kmp_llvm conda-forge
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accessible-pygments 0.0.4 pypi_0 pypi
aiofiles 22.1.0 pyhd8ed1ab_0 conda-forge
aiosqlite 0.19.0 pyhd8ed1ab_0 conda-forge
alabaster 0.7.13 pypi_0 pypi
alembic 1.10.4 pyhd8ed1ab_0 conda-forge
altair 5.0.0 pyhd8ed1ab_0 conda-forge
ansi2html 1.8.0 py310hff52083_1 conda-forge
anyio 3.6.2 pyhd8ed1ab_0 conda-forge
aom 3.5.0 h27087fc_0 conda-forge
argon2-cffi 21.3.0 pyhd8ed1ab_0 conda-forge
argon2-cffi-bindings 21.2.0 py310h5764c6d_3 conda-forge
arrow 1.2.3 pypi_0 pypi
arrow-cpp 12.0.0 ha770c72_1_cpu conda-forge
asteval 0.9.31 pyhd8ed1ab_0 conda-forge
astropy 5.3.1 py310h278f3c1_0 conda-forge
asttokens 2.2.1 pyhd8ed1ab_0 conda-forge
async_generator 1.10 py_0 conda-forge
attrs 23.1.0 pyh71513ae_1 conda-forge
aws-c-auth 0.6.26 h2c7c9e7_6 conda-forge
aws-c-cal 0.5.26 h71eb795_0 conda-forge
aws-c-common 0.8.17 hd590300_0 conda-forge
aws-c-compression 0.2.16 h4f47f36_6 conda-forge
aws-c-event-stream 0.2.20 h69ce273_6 conda-forge
aws-c-http 0.7.7 h7b8353a_3 conda-forge
aws-c-io 0.13.21 h2c99d58_4 conda-forge
aws-c-mqtt 0.8.6 h3a1964a_15 conda-forge
aws-c-s3 0.2.8 h0933b68_4 conda-forge
aws-c-sdkutils 0.1.9 h4f47f36_1 conda-forge
aws-checksums 0.1.14 h4f47f36_6 conda-forge
aws-crt-cpp 0.19.9 h85076f6_5 conda-forge
aws-sdk-cpp 1.10.57 hf40e4db_10 conda-forge
babel 2.12.1 pyhd8ed1ab_1 conda-forge
backcall 0.2.0 pyh9f0ad1d_0 conda-forge
backports 1.0 pyhd8ed1ab_3 conda-forge
backports.functools_lru_cache 1.6.4 pyhd8ed1ab_0 conda-forge
beautifulsoup4 4.12.2 pyha770c72_0 conda-forge
blas 2.116 openblas conda-forge
blas-devel 3.9.0 16_linux64_openblas conda-forge
bleach 6.0.0 pyhd8ed1ab_0 conda-forge
blinker 1.6.2 pyhd8ed1ab_0 conda-forge
blosc 1.21.3 hafa529b_0 conda-forge
bokeh 3.1.1 pyhd8ed1ab_0 conda-forge
boltons 23.0.0 pyhd8ed1ab_0 conda-forge
boost-cpp 1.78.0 h6582d0a_3 conda-forge
bottleneck 1.3.7 py310h0a54255_0 conda-forge
brotli 1.0.9 h166bdaf_8 conda-forge
brotli-bin 1.0.9 h166bdaf_8 conda-forge
brotlipy 0.7.0 py310h5764c6d_1005 conda-forge
brunsli 0.1 h9c3ff4c_0 conda-forge
bzip2 1.0.8 h7f98852_4 conda-forge
c-ares 1.18.1 h7f98852_0 conda-forge
c-blosc2 2.8.0 hf91038e_1 conda-forge
ca-certificates 2023.7.22 hbcca054_0 conda-forge
cached-property 1.5.2 hd8ed1ab_1 conda-forge
cached_property 1.5.2 pyha770c72_1 conda-forge
cairo 1.16.0 h35add3b_1015 conda-forge
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cartopy 0.21.1 py310h7eb24ba_1 conda-forge
certifi 2023.7.22 pyhd8ed1ab_0 conda-forge
certipy 0.1.3 py_0 conda-forge
cffi 1.15.1 py310h255011f_3 conda-forge
cfitsio 4.2.0 hd9d235c_0 conda-forge
cftime 1.6.2 py310hde88566_1 conda-forge
charls 2.4.1 hcb278e6_0 conda-forge
charset-normalizer 3.1.0 pyhd8ed1ab_0 conda-forge
click 8.1.3 unix_pyhd8ed1ab_2 conda-forge
cloudpickle 2.2.1 pyhd8ed1ab_0 conda-forge
colorama 0.4.6 pyhd8ed1ab_0 conda-forge
colorcet 3.0.1 pyhd8ed1ab_0 conda-forge
comm 0.1.3 pyhd8ed1ab_0 conda-forge
conda 23.3.1 py310hff52083_0 conda-forge
conda-package-handling 2.0.2 pyh38be061_0 conda-forge
conda-package-streaming 0.7.0 pyhd8ed1ab_1 conda-forge
configurable-http-proxy 4.5.4 h3b247e2_2 conda-forge
contourpy 1.0.7 py310hdf3cbec_0 conda-forge
cryptography 40.0.2 py310h34c0648_0 conda-forge
curl 8.0.1 h588be90_0 conda-forge
cycler 0.11.0 pyhd8ed1ab_0 conda-forge
cython 0.29.34 py310heca2aa9_0 conda-forge
cytoolz 0.12.0 py310h5764c6d_1 conda-forge
dash 2.11.1 pyhd8ed1ab_0 conda-forge
dask 2023.5.0 pyhd8ed1ab_0 conda-forge
dask-core 2023.5.0 pyhd8ed1ab_0 conda-forge
dav1d 1.0.0 h166bdaf_1 conda-forge
dcw-gmt 2.1.1 ha770c72_0 conda-forge
debugpy 1.6.7 py310heca2aa9_0 conda-forge
decorator 5.1.1 pyhd8ed1ab_0 conda-forge
defusedxml 0.7.1 pyhd8ed1ab_0 conda-forge
dill 0.3.6 pyhd8ed1ab_1 conda-forge
distributed 2023.5.0 pyhd8ed1ab_0 conda-forge
docutils 0.18.1 pypi_0 pypi
ducc0 0.31.0 py310hc6cd4ac_0 conda-forge
entrypoints 0.4 pyhd8ed1ab_0 conda-forge
et_xmlfile 1.1.0 pyhd8ed1ab_0 conda-forge
exceptiongroup 1.1.2 pyhd8ed1ab_0 conda-forge
executing 1.2.0 pyhd8ed1ab_0 conda-forge
expat 2.5.0 hcb278e6_1 conda-forge
fftw 3.3.10 nompi_hc118613_108 conda-forge
firefox 115.0 hd3aeb46_0 conda-forge
flask 2.3.2 pyhd8ed1ab_0 conda-forge
flit-core 3.9.0 pyhd8ed1ab_0 conda-forge
fmt 9.1.0 h924138e_0 conda-forge
font-ttf-dejavu-sans-mono 2.37 hab24e00_0 conda-forge
font-ttf-inconsolata 3.000 h77eed37_0 conda-forge
font-ttf-source-code-pro 2.038 h77eed37_0 conda-forge
font-ttf-ubuntu 0.83 hab24e00_0 conda-forge
fontconfig 2.14.2 h14ed4e7_0 conda-forge
fonts-conda-ecosystem 1 0 conda-forge
fonts-conda-forge 1 0 conda-forge
fonttools 4.39.4 py310h2372a71_0 conda-forge
fqdn 1.5.1 pypi_0 pypi
freetype 2.12.1 hca18f0e_1 conda-forge
freexl 1.0.6 h166bdaf_1 conda-forge
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fsspec 2023.5.0 pyh1a96a4e_0 conda-forge
future 0.18.3 pyhd8ed1ab_0 conda-forge
gdal 3.6.4 py310hf0ca374_2 conda-forge
geckodriver 0.33.0 hd2f7af9_0 conda-forge
geos 3.11.2 hcb278e6_0 conda-forge
geotiff 1.7.1 h480ec47_8 conda-forge
gettext 0.21.1 h27087fc_0 conda-forge
gflags 2.2.2 he1b5a44_1004 conda-forge
ghostscript 9.54.0 h27087fc_2 conda-forge
ghp-import 2.1.0 pypi_0 pypi
giflib 5.2.1 h0b41bf4_3 conda-forge
gitdb 4.0.10 pyhd8ed1ab_0 conda-forge
gitpython 3.1.31 pyhd8ed1ab_0 conda-forge
glog 0.6.0 h6f12383_0 conda-forge
gmp 6.2.1 h58526e2_0 conda-forge
gmpy2 2.1.2 py310h3ec546c_1 conda-forge
gmt 6.4.0 h4733502_10 conda-forge
greenlet 2.0.2 py310hc6cd4ac_1 conda-forge
gshhg-gmt 2.3.7 ha770c72_1003 conda-forge
h11 0.14.0 pyhd8ed1ab_0 conda-forge
h5netcdf 1.2.0 pyhd8ed1ab_0 conda-forge
h5py 3.8.0 nompi_py310ha66b2ad_101 conda-forge
hdf4 4.2.15 h501b40f_6 conda-forge
hdf5 1.14.0 nompi_hb72d44e_103 conda-forge
holoviews 1.16.2 pyhd8ed1ab_0 conda-forge
hvplot 0.8.4 py_0 pyviz
icu 72.1 hcb278e6_0 conda-forge
idna 3.4 pyhd8ed1ab_0 conda-forge
imagecodecs 2023.1.23 py310h241fb82_2 conda-forge
imageio 2.28.1 pyh24c5eb1_0 conda-forge
imagesize 1.4.1 pypi_0 pypi
importlib-metadata 6.6.0 pyha770c72_0 conda-forge
importlib_metadata 6.6.0 hd8ed1ab_0 conda-forge
importlib_resources 5.12.0 pyhd8ed1ab_0 conda-forge
ipykernel 6.23.0 pyh210e3f2_0 conda-forge
ipympl 0.9.3 pyhd8ed1ab_0 conda-forge
ipython 8.13.2 pyh41d4057_0 conda-forge
ipython_genutils 0.2.0 py_1 conda-forge
ipywidgets 8.0.6 pyhd8ed1ab_0 conda-forge
isoduration 20.11.0 pypi_0 pypi
itsdangerous 2.1.2 pyhd8ed1ab_0 conda-forge
jedi 0.18.2 pyhd8ed1ab_0 conda-forge
jinja2 3.1.2 pyhd8ed1ab_1 conda-forge
joblib 1.2.0 pyhd8ed1ab_0 conda-forge
json-c 0.16 hc379101_0 conda-forge
json5 0.9.5 pyh9f0ad1d_0 conda-forge
jsonpatch 1.32 pyhd8ed1ab_0 conda-forge
jsonpointer 2.0 py_0 conda-forge
jsonschema 4.17.3 pyhd8ed1ab_0 conda-forge
jupyter-book 0.15.1 pypi_0 pypi
jupyter-cache 0.6.1 pypi_0 pypi
jupyter-dash 0.4.2 pyhd8ed1ab_1 conda-forge
jupyter-server-mathjax 0.2.6 pyh5bfe37b_1 conda-forge
jupyter_client 8.2.0 pyhd8ed1ab_0 conda-forge
jupyter_core 5.3.0 py310hff52083_0 conda-forge
jupyter_events 0.6.3 pyhd8ed1ab_0 conda-forge
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jupyter_server 2.5.0 pyhd8ed1ab_0 conda-forge
jupyter_server_fileid 0.9.0 pyhd8ed1ab_0 conda-forge
jupyter_server_terminals 0.4.4 pyhd8ed1ab_1 conda-forge
jupyter_server_ydoc 0.8.0 pyhd8ed1ab_0 conda-forge
jupyter_telemetry 0.1.0 pyhd8ed1ab_1 conda-forge
jupyter_ydoc 0.2.3 pyhd8ed1ab_0 conda-forge
jupyterhub 4.0.0 pyh2a2186d_0 conda-forge
jupyterhub-base 4.0.0 pyh2a2186d_0 conda-forge
jupyterlab 3.6.3 pyhd8ed1ab_0 conda-forge
jupyterlab-git 0.41.0 pyhd8ed1ab_1 conda-forge
jupyterlab-spellchecker 0.8.3 pypi_0 pypi
jupyterlab_pygments 0.2.2 pyhd8ed1ab_0 conda-forge
jupyterlab_server 2.22.1 pyhd8ed1ab_0 conda-forge
jupyterlab_widgets 3.0.7 pyhd8ed1ab_0 conda-forge
jupytext 1.14.7 pyh5da7574_0 conda-forge
jxrlib 1.1 h7f98852_2 conda-forge
kaleido-core 0.2.1 h3644ca4_0 conda-forge
kealib 1.5.1 h3845be2_3 conda-forge
keyutils 1.6.1 h166bdaf_0 conda-forge
kiwisolver 1.4.4 py310hbf28c38_1 conda-forge
krb5 1.20.1 h81ceb04_0 conda-forge
latexcodec 2.0.1 pypi_0 pypi
lazy_loader 0.2 pyhd8ed1ab_0 conda-forge
lcms2 2.15 haa2dc70_1 conda-forge
ld_impl_linux-64 2.40 h41732ed_0 conda-forge
lerc 4.0.0 h27087fc_0 conda-forge
libabseil 20230125.0 cxx17_hcb278e6_1 conda-forge
libaec 1.0.6 hcb278e6_1 conda-forge
libarchive 3.6.2 h3d51595_0 conda-forge
libarrow 12.0.0 h1cdf7b0_1_cpu conda-forge
libavif 0.11.1 h5cdd6b5_0 conda-forge
libblas 3.9.0 16_linux64_openblas conda-forge
libbrotlicommon 1.0.9 h166bdaf_8 conda-forge
libbrotlidec 1.0.9 h166bdaf_8 conda-forge
libbrotlienc 1.0.9 h166bdaf_8 conda-forge
libcblas 3.9.0 16_linux64_openblas conda-forge
libcrc32c 1.1.2 h9c3ff4c_0 conda-forge
libcurl 8.0.1 h588be90_0 conda-forge
libdeflate 1.18 h0b41bf4_0 conda-forge
libedit 3.1.20191231 he28a2e2_2 conda-forge
libev 4.33 h516909a_1 conda-forge
libevent 2.1.12 h3358134_0 conda-forge
libexpat 2.5.0 hcb278e6_1 conda-forge
libffi 3.4.2 h7f98852_5 conda-forge
libgcc-ng 12.2.0 h65d4601_19 conda-forge
libgdal 3.6.4 hada8d5e_2 conda-forge
libgfortran-ng 12.2.0 h69a702a_19 conda-forge
libgfortran5 12.2.0 h337968e_19 conda-forge
libglib 2.76.4 hebfc3b9_0 conda-forge
libgomp 12.2.0 h65d4601_19 conda-forge
libgoogle-cloud 2.10.0 hac9eb74_0 conda-forge
libgrpc 1.54.2 hcf146ea_0 conda-forge
libiconv 1.17 h166bdaf_0 conda-forge
libjpeg-turbo 2.1.5.1 h0b41bf4_0 conda-forge
libkml 1.3.0 h37653c0_1015 conda-forge
liblapack 3.9.0 16_linux64_openblas conda-forge
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liblapacke 3.9.0 16_linux64_openblas conda-forge
libllvm11 11.1.0 he0ac6c6_5 conda-forge
libmamba 1.4.2 hcea66bb_0 conda-forge
libmambapy 1.4.2 py310h1428755_0 conda-forge
libnetcdf 4.9.2 nompi_hdf9a29f_104 conda-forge
libnghttp2 1.52.0 h61bc06f_0 conda-forge
libnsl 2.0.0 h7f98852_0 conda-forge
libnuma 2.0.16 h0b41bf4_1 conda-forge
libopenblas 0.3.21 pthreads_h78a6416_3 conda-forge
libpng 1.6.39 h753d276_0 conda-forge
libpq 15.3 hbcd7760_0 conda-forge
libprotobuf 3.21.12 h3eb15da_0 conda-forge
librttopo 1.1.0 h0d5128d_13 conda-forge
libsodium 1.0.18 h36c2ea0_1 conda-forge
libsolv 0.7.23 h3eb15da_0 conda-forge
libspatialite 5.0.1 h7d1ca68_25 conda-forge
libsqlite 3.41.2 h2797004_1 conda-forge
libssh2 1.10.0 hf14f497_3 conda-forge
libstdcxx-ng 12.2.0 h46fd767_19 conda-forge
libthrift 0.18.1 h8fd135c_1 conda-forge
libtiff 4.5.0 ha587672_6 conda-forge
libutf8proc 2.8.0 h166bdaf_0 conda-forge
libuuid 2.38.1 h0b41bf4_0 conda-forge
libuv 1.44.2 h166bdaf_0 conda-forge
libwebp-base 1.3.0 h0b41bf4_0 conda-forge
libxcb 1.13 h7f98852_1004 conda-forge
libxml2 2.10.4 hfdac1af_0 conda-forge
libzip 1.9.2 hc929e4a_1 conda-forge
libzlib 1.2.13 h166bdaf_4 conda-forge
libzopfli 1.0.3 h9c3ff4c_0 conda-forge
linkify-it-py 2.0.0 pyhd8ed1ab_0 conda-forge
llvm-openmp 16.0.3 h4dfa4b3_0 conda-forge
llvmlite 0.39.1 py310h58363a5_1 conda-forge
lmfit 1.2.2 pyhd8ed1ab_0 conda-forge
locket 1.0.0 pyhd8ed1ab_0 conda-forge
lz4 4.3.2 py310h0cfdcf0_0 conda-forge
lz4-c 1.9.4 hcb278e6_0 conda-forge
lzo 2.10 h516909a_1000 conda-forge
mako 1.2.4 pyhd8ed1ab_0 conda-forge
mamba 1.4.2 py310h51d5547_0 conda-forge
markdown 3.4.3 pyhd8ed1ab_0 conda-forge
markdown-it-py 2.2.0 pypi_0 pypi
markupsafe 2.1.2 py310h1fa729e_0 conda-forge
mathjax 2.7.7 ha770c72_3 conda-forge
matplotlib 3.5.3 pypi_0 pypi
matplotlib-inline 0.1.6 pyhd8ed1ab_0 conda-forge
mdit-py-plugins 0.3.5 pypi_0 pypi
mdurl 0.1.0 pyhd8ed1ab_0 conda-forge
mistune 2.0.5 pyhd8ed1ab_0 conda-forge
mpc 1.3.1 hfe3b2da_0 conda-forge
mpfr 4.2.0 hb012696_0 conda-forge
mpmath 1.3.0 pyhd8ed1ab_0 conda-forge
msgpack-python 1.0.5 py310hdf3cbec_0 conda-forge
munkres 1.1.4 pyh9f0ad1d_0 conda-forge
myst-nb 0.17.2 pypi_0 pypi
myst-parser 0.18.1 pypi_0 pypi
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nbclassic 1.0.0 pyhb4ecaf3_1 conda-forge
nbclient 0.7.4 pyhd8ed1ab_0 conda-forge
nbconvert 7.4.0 pyhd8ed1ab_0 conda-forge
nbconvert-core 7.4.0 pyhd8ed1ab_0 conda-forge
nbconvert-pandoc 7.4.0 pyhd8ed1ab_0 conda-forge
nbdime 3.2.1 pyhd8ed1ab_0 conda-forge
nbformat 5.8.0 pyhd8ed1ab_0 conda-forge
ncurses 6.3 h27087fc_1 conda-forge
nest-asyncio 1.5.6 pyhd8ed1ab_0 conda-forge
netcdf4 1.6.4 nompi_py310hde23a83_100 conda-forge
networkx 3.1 pyhd8ed1ab_0 conda-forge
nodejs 16.19.0 h4abf6b9_1 conda-forge
nomkl 1.0 h5ca1d4c_0 conda-forge
notebook 6.5.4 pyha770c72_0 conda-forge
notebook-shim 0.2.3 pyhd8ed1ab_0 conda-forge
nspr 4.35 h27087fc_0 conda-forge
nss 3.89 he45b914_0 conda-forge
numba 0.56.4 py310h0e39c9b_1 conda-forge
numexpr 2.8.4 py310h690d005_100 conda-forge
numpy 1.23.5 py310h53a5b5f_0 conda-forge
oauthlib 3.2.2 pyhd8ed1ab_0 conda-forge
openblas 0.3.21 pthreads_h320a7e8_3 conda-forge
openjpeg 2.5.0 hfec8fc6_2 conda-forge
openpyxl 3.1.2 py310h2372a71_0 conda-forge
openssl 3.1.1 hd590300_1 conda-forge
orc 1.8.3 hfdbbad2_0 conda-forge
outcome 1.2.0 pyhd8ed1ab_0 conda-forge
packaging 23.1 pyhd8ed1ab_0 conda-forge
pamela 1.0.0 py_0 conda-forge
pandas 1.5.3 py310h9b08913_1 conda-forge
pandoc 2.19.2 h32600fe_2 conda-forge
pandocfilters 1.5.0 pyhd8ed1ab_0 conda-forge
panel 1.2.0 pyhd8ed1ab_0 conda-forge
param 1.13.0 pyh1a96a4e_0 conda-forge
parquet-cpp 1.5.1 2 conda-forge
parso 0.8.3 pyhd8ed1ab_0 conda-forge
partd 1.4.0 pyhd8ed1ab_0 conda-forge
patsy 0.5.3 pyhd8ed1ab_0 conda-forge
pcre 8.45 h9c3ff4c_0 conda-forge
pcre2 10.40 hc3806b6_0 conda-forge
pexpect 4.8.0 pyh1a96a4e_2 conda-forge
pickleshare 0.7.5 py_1003 conda-forge
pillow 9.5.0 py310h065c6d2_0 conda-forge
pip 23.1.2 pyhd8ed1ab_0 conda-forge
pixman 0.40.0 h36c2ea0_0 conda-forge
pkgutil-resolve-name 1.3.10 pyhd8ed1ab_0 conda-forge
platformdirs 3.5.1 pyhd8ed1ab_0 conda-forge
plotly 5.15.0 pyhd8ed1ab_0 conda-forge
pluggy 1.0.0 pyhd8ed1ab_5 conda-forge
pooch 1.7.0 pyha770c72_3 conda-forge
poppler 23.05.0 hd18248d_1 conda-forge
poppler-data 0.4.12 hd8ed1ab_0 conda-forge
postgresql 15.3 h814edd5_0 conda-forge
proj 9.2.0 h8ffa02c_0 conda-forge
prometheus_client 0.16.0 pyhd8ed1ab_0 conda-forge
prompt-toolkit 3.0.38 pyha770c72_0 conda-forge
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prompt_toolkit 3.0.38 hd8ed1ab_0 conda-forge
protobuf 4.21.12 py310heca2aa9_0 conda-forge
psutil 5.9.5 py310h1fa729e_0 conda-forge
pthread-stubs 0.4 h36c2ea0_1001 conda-forge
ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge
pure_eval 0.2.2 pyhd8ed1ab_0 conda-forge
py-cpuinfo 9.0.0 pyhd8ed1ab_0 conda-forge
pyarrow 12.0.0 py310he6bfd7f_1_cpu conda-forge
pybind11-abi 4 hd8ed1ab_3 conda-forge
pybtex 0.24.0 pypi_0 pypi
pybtex-docutils 1.0.2 pypi_0 pypi
pycosat 0.6.4 py310h5764c6d_1 conda-forge
pycparser 2.21 pyhd8ed1ab_0 conda-forge
pyct 0.4.6 py_0 conda-forge
pyct-core 0.4.6 py_0 conda-forge
pycurl 7.45.1 py310h60f9ec7_3 conda-forge
pydata-sphinx-theme 0.13.3 pypi_0 pypi
pyerfa 2.0.0.3 py310h0a54255_0 conda-forge
pygments 2.15.1 pyhd8ed1ab_0 conda-forge
pygmt 0.9.0 pyhd8ed1ab_0 conda-forge
pyjwt 2.7.0 pyhd8ed1ab_0 conda-forge
pyopenssl 23.1.1 pyhd8ed1ab_0 conda-forge
pyparsing 3.0.9 pyhd8ed1ab_0 conda-forge
pyproj 3.6.0 py310ha254fea_0 conda-forge
pyrsistent 0.19.3 py310h1fa729e_0 conda-forge
pyshp 2.3.1 pyhd8ed1ab_0 conda-forge
pyshtools 4.10.3 py310h3e61171_0 conda-forge
pysocks 1.7.1 pyha2e5f31_6 conda-forge
pytables 3.8.0 py310hde6a235_1 conda-forge
python 3.10.11 he550d4f_0_cpython conda-forge
python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge
python-fastjsonschema 2.16.3 pyhd8ed1ab_0 conda-forge
python-json-logger 2.0.7 pyhd8ed1ab_0 conda-forge
python-kaleido 0.2.1 pyhd8ed1ab_0 conda-forge
python-tzdata 2023.3 pyhd8ed1ab_0 conda-forge
python_abi 3.10 3_cp310 conda-forge
pytz 2023.3 pyhd8ed1ab_0 conda-forge
pyviz_comms 2.3.2 pyhd8ed1ab_0 conda-forge
pywavelets 1.4.1 py310h0a54255_0 conda-forge
pyyaml 6.0 py310h5764c6d_5 conda-forge
pyzmq 25.0.2 py310h059b190_0 conda-forge
quaternion 2022.4.3 py310h0a54255_0 conda-forge
qutip 4.7.2 py310hfb6f7a9_1 conda-forge
re2 2023.02.02 hcb278e6_0 conda-forge
readline 8.2 h8228510_1 conda-forge
reproc 14.2.4 h0b41bf4_0 conda-forge
reproc-cpp 14.2.4 hcb278e6_0 conda-forge
requests 2.29.0 pyhd8ed1ab_0 conda-forge
retrying 1.3.3 py_2 conda-forge
rfc3339-validator 0.1.4 pyhd8ed1ab_0 conda-forge
rfc3986-validator 0.1.1 pyh9f0ad1d_0 conda-forge
ruamel.yaml 0.17.26 py310h2372a71_0 conda-forge
ruamel.yaml.clib 0.2.7 py310h1fa729e_1 conda-forge
s2n 1.3.44 h06160fa_0 conda-forge
scikit-image 0.20.0 py310h9b08913_1 conda-forge
scikit-learn 1.2.2 py310h41b6a48_1 conda-forge
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scipy 1.10.1 py310ha4c1d20_3 conda-forge
scooby 0.7.2 pyhd8ed1ab_0 conda-forge
seaborn 0.9.0 py_2 conda-forge
seaborn-base 0.12.2 pyhd8ed1ab_0 conda-forge
selenium 4.10.0 pyhd8ed1ab_0 conda-forge
send2trash 1.8.2 pyh41d4057_0 conda-forge
setuptools 67.7.2 pyhd8ed1ab_0 conda-forge
setuptools-scm 7.1.0 pyhd8ed1ab_0 conda-forge
shapely 2.0.1 py310h056c13c_1 conda-forge
six 1.16.0 pyh6c4a22f_0 conda-forge
smmap 3.0.5 pyh44b312d_0 conda-forge
snappy 1.1.10 h9fff704_0 conda-forge
sniffio 1.3.0 pyhd8ed1ab_0 conda-forge
snowballstemmer 2.2.0 pypi_0 pypi
sortedcontainers 2.4.0 pyhd8ed1ab_0 conda-forge
soupsieve 2.3.2.post1 pyhd8ed1ab_0 conda-forge
spherical_functions 2022.4.2 pyhd8ed1ab_0 conda-forge
sphinx 5.0.2 pypi_0 pypi
sphinx-book-theme 1.0.1 pypi_0 pypi
sphinx-comments 0.0.3 pypi_0 pypi
sphinx-copybutton 0.5.2 pypi_0 pypi
sphinx-design 0.3.0 pypi_0 pypi
sphinx-external-toc 0.3.1 pypi_0 pypi
sphinx-jupyterbook-latex 0.5.2 pypi_0 pypi
sphinx-multitoc-numbering 0.1.3 pypi_0 pypi
sphinx-thebe 0.2.1 pypi_0 pypi
sphinx-togglebutton 0.3.2 pypi_0 pypi
sphinxcontrib-applehelp 1.0.4 pypi_0 pypi
sphinxcontrib-bibtex 2.5.0 pypi_0 pypi
sphinxcontrib-devhelp 1.0.2 pypi_0 pypi
sphinxcontrib-htmlhelp 2.0.1 pypi_0 pypi
sphinxcontrib-jsmath 1.0.1 pypi_0 pypi
sphinxcontrib-qthelp 1.0.3 pypi_0 pypi
sphinxcontrib-serializinghtml 1.1.5 pypi_0 pypi
spinsfast 2022.4.2 py310hc9031d1_0 conda-forge
sqlalchemy 2.0.13 py310h2372a71_0 conda-forge
sqlite 3.41.2 h2c6b66d_1 conda-forge
stack_data 0.6.2 pyhd8ed1ab_0 conda-forge
statsmodels 0.14.0 py310h278f3c1_1 conda-forge
sympy 1.11.1 pypyh9d50eac_103 conda-forge
tabulate 0.9.0 pypi_0 pypi
tblib 1.7.0 pyhd8ed1ab_0 conda-forge
tenacity 8.2.2 pyhd8ed1ab_0 conda-forge
terminado 0.17.1 pyh41d4057_0 conda-forge
threadpoolctl 3.1.0 pyh8a188c0_0 conda-forge
tifffile 2023.4.12 pyhd8ed1ab_0 conda-forge
tiledb 2.13.2 hd532e3d_0 conda-forge
tinycss2 1.2.1 pyhd8ed1ab_0 conda-forge
tk 8.6.12 h27826a3_0 conda-forge
toml 0.10.2 pyhd8ed1ab_0 conda-forge
tomli 2.0.1 pyhd8ed1ab_0 conda-forge
toolz 0.12.0 pyhd8ed1ab_0 conda-forge
tornado 6.3 py310h1fa729e_0 conda-forge
tqdm 4.65.0 pyhd8ed1ab_1 conda-forge
traitlets 5.9.0 pyhd8ed1ab_0 conda-forge
trio 0.21.0 py310hff52083_0 conda-forge
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trio-websocket 0.10.3 pyhd8ed1ab_0 conda-forge
typing-extensions 4.5.0 hd8ed1ab_0 conda-forge
typing_extensions 4.5.0 pyha770c72_0 conda-forge
tzcode 2023c h0b41bf4_0 conda-forge
tzdata 2023c h71feb2d_0 conda-forge
uc-micro-py 1.0.1 pyhd8ed1ab_0 conda-forge
ucx 1.14.0 h3484d09_2 conda-forge
uncertainties 3.1.7 pyhd8ed1ab_0 conda-forge
unicodedata2 15.0.0 py310h5764c6d_0 conda-forge
uri-template 1.3.0 pypi_0 pypi
urllib3 1.26.15 pyhd8ed1ab_0 conda-forge
wcwidth 0.2.6 pyhd8ed1ab_0 conda-forge
webcolors 1.13 pypi_0 pypi
webencodings 0.5.1 py_1 conda-forge
websocket-client 1.5.1 pyhd8ed1ab_0 conda-forge
werkzeug 2.3.6 pyhd8ed1ab_0 conda-forge
wget 3.2 pypi_0 pypi
wheel 0.40.0 pyhd8ed1ab_0 conda-forge
widgetsnbextension 4.0.7 pyhd8ed1ab_0 conda-forge
wsproto 1.2.0 pyhd8ed1ab_0 conda-forge
xarray 2022.3.0 pyhd8ed1ab_0 conda-forge
xerces-c 3.2.4 h8d71039_2 conda-forge
xlrd 2.0.1 pyhd8ed1ab_3 conda-forge
xorg-kbproto 1.0.7 h7f98852_1002 conda-forge
xorg-libice 1.1.1 hd590300_0 conda-forge
xorg-libsm 1.2.4 h7391055_0 conda-forge
xorg-libx11 1.8.4 h0b41bf4_0 conda-forge
xorg-libxau 1.0.9 h7f98852_0 conda-forge
xorg-libxdmcp 1.1.3 h7f98852_0 conda-forge
xorg-libxext 1.3.4 h0b41bf4_2 conda-forge
xorg-libxrender 0.9.10 h7f98852_1003 conda-forge
xorg-renderproto 0.11.1 h7f98852_1002 conda-forge
xorg-xextproto 7.3.0 h0b41bf4_1003 conda-forge
xorg-xproto 7.0.31 h7f98852_1007 conda-forge
xyzpy 1.2.1 pyhd8ed1ab_0 conda-forge
xyzservices 2023.2.0 pyhd8ed1ab_0 conda-forge
xz 5.2.6 h166bdaf_0 conda-forge
y-py 0.5.9 py310h4426083_0 conda-forge
yaml 0.2.5 h7f98852_2 conda-forge
yaml-cpp 0.7.0 h27087fc_2 conda-forge
ypy-websocket 0.8.2 pyhd8ed1ab_0 conda-forge
zeromq 4.3.4 h9c3ff4c_1 conda-forge
zfp 1.0.0 h27087fc_3 conda-forge
zict 3.0.0 pyhd8ed1ab_0 conda-forge
zipp 3.15.0 pyhd8ed1ab_0 conda-forge
zlib 1.2.13 h166bdaf_4 conda-forge
zlib-ng 2.0.7 h0b41bf4_0 conda-forge
zstandard 0.19.0 py310hdeb6495_1 conda-forge
zstd 1.5.2 h3eb15da_6 conda-forge
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